Abstract

This work demonstrates, for the first time, an all-optically controllable distributed feedback (DFB) laser based on a dye-doped holographic polymer-dispersed liquid crystal (DDHPDLC) grating with a photoisomerizable dye. Intensity of the lasing emission can be reduced and increased by raising the irradiation intensity of one CW circularly-polarized green beam and the irradiation time of one CW circularly-polarized red beam, respectively. The all-optical controllability of the lasing emission is owing to the green-beam-induced isothermal nematic→isotropic and red-beam-induced isothermal isotropic→nematic phase transitions of the LCs via transcis and cistrans back isomerizations of the azo-dye, respectively, in the LC-droplet-rich regions of the grating. The former (latter) mechanism can reduce (increase) the index modulation and thereby the coupling strength in the DFB grating, resulting in the decay (rise) of the lasing emission. Thermal effect is excluded from possible mechanisms causing such an optical controllability of the lasing emission.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
    [CrossRef]
  2. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
    [CrossRef]
  3. R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
    [CrossRef]
  4. S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005).
    [CrossRef]
  5. V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
    [CrossRef] [PubMed]
  6. Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
    [CrossRef]
  7. S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
    [CrossRef]
  8. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
    [CrossRef]
  9. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [CrossRef]
  10. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [CrossRef]
  11. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
    [CrossRef]
  12. J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
    [CrossRef]
  13. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  14. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
    [CrossRef] [PubMed]
  15. H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
    [CrossRef] [PubMed]
  16. H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
    [CrossRef]

2007 (3)

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

2006 (3)

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

2005 (2)

S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005).
[CrossRef]

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

2004 (3)

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

2003 (1)

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

2002 (1)

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

1994 (2)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Bloemer, M. J.

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bunning, T.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Bunning, T. J.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Cartwright, A. N.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Chen, G.-H.

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

Crawford, G. P.

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

Criante, L.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

DeSarkar, M.

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

Dowling, P.

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Elim, H. I.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Francescangeli, O.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

Fuh, A. Y.-G.

S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005).
[CrossRef]

He, G. S.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Hsiao, V. K. S.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Jakubiak, R.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Ji, W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Lee, C.-R.

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

Li, H. P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Li, J.-H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Lin, T.-C.

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Lu, C.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

Lucchetta, D. E.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

Mi, J.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Mo, T.-S.

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

Natarajan, L.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Natarajan, L. V.

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Pan, M.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

Prasad, P. N.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Qi, J.

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

Scalora, M.

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Shum, P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Simoni, F.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

Sousa, M. E.

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

Sun, X. W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Sutherland, R.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Tondiglia, V.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

Tondiglia, V. P.

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Urbas, A.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Vaia, R. A.

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

Warren, G. T.

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

Woltman, S. J.

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

Wu, S.-T.

S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005).
[CrossRef]

Yeh, H.-C.

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

Yu, H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

Zhang, H.

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

Zhang, X. H.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Appl. Phys. Lett. 83(14), 2733–2735 (2003).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Appl. Phys. Lett. 84(6), 837–839 (2004).
[CrossRef]

R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, and R. A. Vaia, “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Appl. Phys. Lett. 85(25), 6095–6097 (2004).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 90(1), 011109 (2007).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 90(26), 261103 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

J. Qi, M. DeSarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91(8), 4795–4800 (2002).
[CrossRef]

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

J. Chem. Phys. (1)

H.-C. Yeh, G.-H. Chen, C.-R. Lee, and T.-S. Mo, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127(14), 141105 (2007).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Jpn. J. Appl. Phys. 44(2), 977–980 (2005).
[CrossRef]

Opt. Express (1)

V. K. S. Hsiao, C. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, and T. J. Bunning, “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Opt. Express 13(10), 3787–3794 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” Proc. SPIE 6135, 61350B (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) An SEM image of the DDHPDLC grating with LCs in droplets removed; the length of the white bar is 100nm and the dark stripes in the grating are the LC-droplet-rich regions. (b) Top-view of experimental setup for examining all-optically controllable lasing emission from pre-formed DDHPDLC grating cell. CW green and red beams are both circularly polarized. Spectrometer probe is placed to receive the lateral lasing output; analyzer (A) is placed between the cell and the spectrometer probe to divide the optical field of the lasing output into two mutually orthogonal in-plane and out-of-plane components, (E)IP and (E)OP. λ/2: half wave-plate for 532nm; PBS: polarizing beam splitter. (G): grating vector.

Fig. 2
Fig. 2

(a) Variations of measured lasing intensity and corresponding full-widths at half-maxima (FWHM) with incident pumped energy; (b) measured spectrum of lasing emission (black peak) at U=25μJ/pulse and corresponding reflection spectrum (red curve) of grating cell. Inset in (b) shows the obtained lasing pattern on the screen.

Fig. 3
Fig. 3

Variations in measured lasing intensity for (a) (E)IP and (b) (E)OP with irradiation intensity of CW green beam (IG=0-300mW/cm2) at a fixed irradiation time tG = 1min. Inset plots corresponding variation of measured lasing intensity with IG as the analyzer is removed. Incident pumped pulse energy is set to 25μJ/pulse.

Fig. 4
Fig. 4

Diagram of DDHPDLC grating model of green (red)-beam-induced isothermal N→I (I→N) phase transition upon the increase in IG (tG). White and orange cigar-like (band) molecules represent LCs and trans (cis) D2-dyes, respectively.

Fig. 5
Fig. 5

Variation of lasing signal with increasing time (tR) of irradiation by CW red beam (at a fixed irradiation intensity IR=1500mW/cm2). Incident pumped pulse energy is set to 25μJ/pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ w 2 n sin θ 2 ,
κ L = π n 1 L λ + 1 2 j α 1 L .
α L ( π κ L ) 2 ,

Metrics