Abstract

We previously demonstrated a nested pair of single mode (pump/THz) waveguides which produced guided far-infrared (1.3 THz) light with a record power-normalized conversion efficiency of 1.3x10−7 W−1 by way of continuous phase matched difference frequency generation (DFG) [Opt. Express 16, 13296 (2008)]. Using the same numerical simulation tools we used to design and model this LiNbO3-based device, we show that a lattice-matched AlGaAs heterostructure, with its significantly lower absorption losses, can produce guided far-infrared light (3.5 THz) with a power-normalized conversion efficiency of 1.3 x 10−5 W−1 – some 100 times larger than achieved with the LiNbO3 structure.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
    [CrossRef] [PubMed]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  3. D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974).
    [CrossRef]
  4. Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
    [CrossRef] [PubMed]
  5. W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
    [CrossRef]
  6. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
    [CrossRef]
  7. M. R. Brozel, and G. E. Stillman, Properties of Gallium Arsenide, Datareviews Series 16 (The Institution of Electrical Engineers, London, United Kingdom, 1996).
  8. H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
    [CrossRef]
  9. S. Adachi, Properties of Aluminum Gallium Arsenide, Datareviews Series 7 (The Institution of Electrical Engineers, London, United Kingdom, 1996).
  10. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
    [CrossRef]
  11. C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
    [CrossRef]
  12. S. Adachi, “GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
    [CrossRef]
  13. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, Germany, 1990).
  14. E. Palik, ed., Handbook of Optical Constants of Solids, (Academic Press, Orlando, FL, (1985).
  15. Y. R. Shen, Nonlinear Infrared Generation, (Springer-Verlag, Berlin Heidelberg, 1977).
  16. J. S. Blakemore, “Mid-infrared dispersion of the refractive index of and reflectivity for GaAs,” J. Appl. Phys. 62(11), 4528 (1987).
    [CrossRef]
  17. D. N. Nikogosyan, Properties of Optical and Laser-related Materials, (Wiley, Chichester, 1997), p. 333.

2008

C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
[CrossRef] [PubMed]

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

2007

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

2006

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

2004

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[CrossRef]

1999

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
[CrossRef]

1987

J. S. Blakemore, “Mid-infrared dispersion of the refractive index of and reflectivity for GaAs,” J. Appl. Phys. 62(11), 4528 (1987).
[CrossRef]

1985

S. Adachi, “GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[CrossRef]

1980

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[CrossRef]

1974

D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Adachi, S.

S. Adachi, “GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Blakemore, J. S.

J. S. Blakemore, “Mid-infrared dispersion of the refractive index of and reflectivity for GaAs,” J. Appl. Phys. 62(11), 4528 (1987).
[CrossRef]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Bliss, D. F.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Chandrasekhar, H. R.

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[CrossRef]

Chung, Y. C.

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

Coleman, P. D.

D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Fejer, M. M.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Harris, J. S.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
[CrossRef]

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
[CrossRef]

Kozlov, V.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Kuech, T. F.

C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
[CrossRef] [PubMed]

Kuo, P. S.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

Lee, Y. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Lin, A.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

Lynch, C.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

McCaughan, L.

C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
[CrossRef] [PubMed]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Ramdas, A. K.

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[CrossRef]

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
[CrossRef]

Schunemann, P. G.

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[CrossRef]

Shin, S. Y.

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

Staus, C.

C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
[CrossRef] [PubMed]

Takushima, Y.

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

Thompson, D. E.

D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

Zens, T.

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

Appl. Phys. Lett.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[CrossRef]

IEEE Trans, MTT

D. E. Thompson and P. D. Coleman, “Step tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans, MTT 22(12), 995–1000 (1974).
[CrossRef]

Int. J. Infrared Millim. Waves

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millim. Waves 20(4), 595–604 (1999).
[CrossRef]

J. Appl. Phys.

J. S. Blakemore, “Mid-infrared dispersion of the refractive index of and reflectivity for GaAs,” J. Appl. Phys. 62(11), 4528 (1987).
[CrossRef]

S. Adachi, “GaAs, AlAs and AlxGa1-xAs material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[CrossRef]

J. Cryst. Growth

C. Lynch, D. F. Bliss, T. Zens, A. Lin, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Growth of mm thick orientation patterned GaAs for IR and THz generation,” J. Cryst. Growth 310(24), 5241–5247 (2008).
[CrossRef]

Opt. Commun.

W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233(1-3), 183–189 (2004).
[CrossRef]

Opt. Express

Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference frequency generation of THz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
[CrossRef] [PubMed]

C. Staus, T. F. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16(17), 13296–13303 (2008).
[CrossRef] [PubMed]

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. B

H. R. Chandrasekhar and A. K. Ramdas, “Nonparabolicity of the conduction band and the coupled plasmon-phonon modes in n-GaAs,” Phys. Rev. B 21(4), 1511–1515 (1980).
[CrossRef]

Other

S. Adachi, Properties of Aluminum Gallium Arsenide, Datareviews Series 7 (The Institution of Electrical Engineers, London, United Kingdom, 1996).

M. R. Brozel, and G. E. Stillman, Properties of Gallium Arsenide, Datareviews Series 16 (The Institution of Electrical Engineers, London, United Kingdom, 1996).

D. N. Nikogosyan, Properties of Optical and Laser-related Materials, (Wiley, Chichester, 1997), p. 333.

T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, Germany, 1990).

E. Palik, ed., Handbook of Optical Constants of Solids, (Academic Press, Orlando, FL, (1985).

Y. R. Shen, Nonlinear Infrared Generation, (Springer-Verlag, Berlin Heidelberg, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 2
Fig. 2

TM (E-field || y) fundamental mode of the inner rib waveguide at a pump wavelength of λ1 = 1.535 μm. Rib dimension are t = 2.5 μm, s = 1 μm, and w = 5 μm. The peak electric field amplitude is normalized to 1.

Fig. 1
Fig. 1

Diagram of the AlGaAs nested waveguide structure. The pump rib waveguide is defined by the AlGaAs layers and dimensions s, t, and w. The THz waveguide is defined by the pump layers and the rib dimensions S, T, and W.

Fig. 3
Fig. 3

Phase mismatch Δβ for the (100) AlGaAs nested waveguidestructure. S = 15 μm and W = 50 μm.

Fig. 4
Fig. 4

Calculated THz output power P3 for the (100) based AlGaAs embedded waveguide structure. The device length and pumps powers were L = 11 mm and P 1 = P 2 = 760 mW, respectively.

Fig. 5
Fig. 5

TM (E-field || y) fundamental mode of the THz rib waveguide at λ3 = 85.75 μm (3.5 THz). The rib dimensions are T = 30 μm, S = 15 μm, and W = 50 μm (see Fig. 1). The power absorption coefficient is 2α3 = 1.4 cm−1. The peak electric field amplitude is normalized to one.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 3 ( L ) = ω 3 2 ε o 2 | Γ | 2 4 ( α 3 2 + Δ β 2 ) | Ω 3 | 2 P 1 P 2 ( e 2 α 3 L 2 e α 3 L cos ( Δ β L ) + 1 ) = η p P 1 P 2 .
Γ = d e f f E t , 1 E t , 2 E t , 3 d x d y ,
1 2 Re [ ( E t , m × H t , m ) ] z ^ d x d y = 1 W , H t , m = i / ( ω m μ o ) × E t , m .
Ω 3 = 1 / 2 ( E t , 3 × H t , 3 ) z d x d y .

Metrics