Abstract

Novel telluride glasses with high electrical conductivity, wide infrared transparency and good resistance to crystallization are used to design an opto-electrophoretic sensor for detection and identification of hazardous microorganisms. The sensor is based on an attenuated total reflectance element made of Ge-As-Te glass that serves as both an optical sensing zone and an electrode for driving the migration of bio-molecules within the evanescent wave of the sensor. An electric field is applied between the optical element and a counter electrode in order to induce the migration of bio-molecules carrying surface charges. The effect of concentration and applied voltage is tested and the migration effect is shown to be reversible upon switching the electric field. The collected signal is of high quality and can be used to identify different bacterial genus through statistical spectral analysis. This technique therefore provides the ability to detect hazardous microorganisms with high specificity and high sensitivity in aqueous environments. This has great potential for online monitoring of water quality.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
    [CrossRef] [PubMed]
  2. M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
    [CrossRef]
  3. D. Naumann, “Infrared spectroscopy in microbiology,” in Encyclopedia of analytical chemistry, R. A. Meyers, ed. (John Wiley & Sons Ltd, Chichester, 2000), p. 102.
  4. P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
    [CrossRef]
  5. Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55–72 (2008).
    [CrossRef]
  6. B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
    [CrossRef] [PubMed]
  7. Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).
  8. A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
    [CrossRef]
  9. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
    [CrossRef] [PubMed]
  10. P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins: A table,” J. Chromatogr. A 127(1), 1–28 (1976).
    [CrossRef]
  11. H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
    [PubMed]
  12. J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
    [CrossRef]

2010

Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).

2008

Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55–72 (2008).
[CrossRef]

2007

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

2006

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
[CrossRef]

2005

2004

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

2003

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[CrossRef] [PubMed]

1999

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[CrossRef]

1991

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
[CrossRef] [PubMed]

1982

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
[PubMed]

1976

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins: A table,” J. Chromatogr. A 127(1), 1–28 (1976).
[CrossRef]

Adam, J. L.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Albertsson, P. A.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
[PubMed]

Anne, M. L.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Boesewetter, D. E.

Boussard-Pledel, C.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Boussard-Plédel, C.

Boydston-White, S.

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[CrossRef]

Bureau, B.

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
[CrossRef] [PubMed]

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Caravaggio, T.

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins: A table,” J. Chromatogr. A 127(1), 1–28 (1976).
[CrossRef]

Chiriboga, L.

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[CrossRef]

Collier, J.

DeRosa, D. L.

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

Diem, M.

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[CrossRef]

Dupont, V.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Helm, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
[CrossRef] [PubMed]

Juncker, C.

Katzir, A.

Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55–72 (2008).
[CrossRef]

Keirsse, J.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Kronvall, G.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
[PubMed]

Labischinski, H.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
[CrossRef] [PubMed]

Le Coq, D.

Leroyer, P.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Loreal, O.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Lucas, P.

Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
[CrossRef] [PubMed]

Miörner, H.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
[PubMed]

Mizaikoff, B.

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[CrossRef] [PubMed]

Naumann, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
[CrossRef] [PubMed]

Raichlin, Y.

Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55–72 (2008).
[CrossRef]

Ribault, C.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Righetti, P. G.

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins: A table,” J. Chromatogr. A 127(1), 1–28 (1976).
[CrossRef]

Riley, M. R.

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
[CrossRef] [PubMed]

Ropert, M.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Sire, O.

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Wilhelm, A. A.

Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

Yang, Z.

Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).

Anal. Biochem.

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351(1), 1–10 (2006).
[CrossRef]

Anal. Chem.

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[CrossRef] [PubMed]

Appl. Spectrosc.

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59(1), 1–9 (2005).
[CrossRef] [PubMed]

Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55–72 (2008).
[CrossRef]

M. Diem, S. Boydston-White, and L. Chiriboga, “Infrared Spectroscopy of Cells and Tissues: Shinning Light onto a Novel Subject,” Appl. Spectrosc. 53(4), 148–161 (1999).
[CrossRef]

Infect. Immun.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun. 36(1), 227–234 (1982).
[PubMed]

J. Am. Ceram. Soc.

Z. Yang, A. A. Wilhelm, and P. Lucas, “High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection,” J. Am. Ceram. Soc. 93, 1941–1944 (2010).

J. Chromatogr. A

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins: A table,” J. Chromatogr. A 127(1), 1–28 (1976).
[CrossRef]

J. Mater. Res.

A. A. Wilhelm, P. Lucas, D. L. DeRosa, and M. R. Riley, “Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensors,” J. Mater. Res. 22(4), 1098–1104 (2007).
[CrossRef]

Nature

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351(6321), 81–82 (1991).
[CrossRef] [PubMed]

Proc. SPIE

J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M. L. Anne, C. Ribault, O. Sire, O. Loreal, and J. L. Adam, “Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine,” Proc. SPIE 5459, 61–68 (2004).
[CrossRef]

Other

D. Naumann, “Infrared spectroscopy in microbiology,” in Encyclopedia of analytical chemistry, R. A. Meyers, ed. (John Wiley & Sons Ltd, Chichester, 2000), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectrum of Ge10As15Te75 glass, a 2 mm polished disk is used for the measurement; the inset is a photograph of the ATR plate made from Ge10As15Te75 glass

Fig. 2
Fig. 2

(Color online) Schematic drawing of the electro-deposition device used for collection and analysis of charged biological molecules

Fig. 3
Fig. 3

(Color Online) ATR spectra in a BSA electro-deposition experiment with an applied voltage of 2.0V, 10mg/ml BSA aqueous solution was used and the curves from the bottom to the top correspond to 0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 22, 28, and 34 minutes, respectively; the inset shows the evolution of Amide II peak height as the applied voltages are 2.0V and 1.6V, respectively

Fig. 4
Fig. 4

Evolution of the Amide II peak intensity in a BSA electro-deposition experiment, 15mg/ml BSA aqueous solution was used; no voltage was applied in the first 30min, then 1.6V voltage was applied, after saturation, −4V reversed voltage was applied

Fig. 5
Fig. 5

(Color online) Evolution of the Amide I (1650cm−1) peak intensity of BSA for solutions with different BSA concentrations, 1.6V voltage was used for the tests; the inset shows linear relationship between the signal intensity at saturation and the concentration of BSA in solution.

Fig. 6
Fig. 6

(Color online) Reduced ATR spectra of BSA, E. coli and S. auteus in an electro-deposition experiment

Fig. 7
Fig. 7

(Color online) Principal Component Analysis maps of 22 bacteria spectra showing the potential for distinguishing different bacterial strains (E. coli and S. aureus): (a) 3-D plot of the 2nd, 3rd and 4th PCA eigenvectors, (b) 2-D plot along the 2nd and 4th eigenvector axes.

Metrics