Abstract

We have demonstrated that bandgap energy of Si can be controlled by micro-mechanically structured Si beams (250 nm thick, 3 μm wide, and 15 μm long) elastically deformed by an external force. Microscopic photoluminescence spectroscopy reveals that downward bending of the beam by 3 μm reveals a red shift in the peak from ~1100 nm up to ~1300 nm. It is found from calculations based on deformation potentials and finite element method that tensile strain as large as ~1.5% is generated in the top surface of the deformed beam and responsible for the red shift of the peak. The presented result should be a proof of concept to cancel wavelength fluctuation unavoidably occurring on uncooled LSIs in terms of stress application, and thereby an enabler of wavelength division multiplexing implementation on a chip. The applications of other beam materials such as Ge and GaAs are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, “Photons to the resque: microelectronics becomes microphotonics,” Electrochem. Soc. Interface 9, 28–31 (2000).
  2. H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
    [CrossRef]
  3. G. C. Osbourn, “InGaAs-InGaAs strained-layer superlattices: A proposal for useful, new electronic materials,” Phys. Rev. B 27(8), 5126–5128 (1983).
    [CrossRef]
  4. H. K. Choi and C. A. Wang, “InGaAs/InGaAs strained single quantum well diode lasers with extremely low threshold current densisty and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
    [CrossRef]
  5. W. Xiang and C. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1323–1326 (2009).
    [CrossRef]
  6. H. Okamoto and D. Ito, “K. Onomitsu1, T. Sogawa1, and H. Yamaguchi, “Controlling quality factor in micromechanical resonators by carrier excitation,” Appl. Phys. Express 2, 035001 (2009).
    [CrossRef]
  7. P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
    [CrossRef] [PubMed]
  8. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [CrossRef]
  9. A. L. Ruoff, “On the ultimate yield strength of solids,” J. Appl. Phys. 49(1), 197–200 (1978).
    [CrossRef]
  10. T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
    [CrossRef]
  11. T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
    [CrossRef]
  12. O. Madelung, “Semiconductors- Basic Data” 2nd edition (Springer-Verlag Berlin Heidelberg, 1996) p.12.
  13. D. K. Biegelesen, “Photoelestic tensor of silicon and the volume dependence of the avarate Gap,” Rhys. Reb. Lett. 32(21), 1196–1199 (1974).
    [CrossRef]
  14. G. Ghosh, “Temperature dispersion of refractive indices in semiconductors,” J. Appl. Phys. 79(12), 9388–9389 (1996).
    [CrossRef]
  15. K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H.-C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, “Si Microphotonics for optical interconnection,” in Optical Interconnects, The Silicon Approach, eds L. Pavesi, G. Guillot (Springer Berlin Heidelberg New Yok, 2006), pp. 291–310.

2009 (3)

W. Xiang and C. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1323–1326 (2009).
[CrossRef]

H. Okamoto and D. Ito, “K. Onomitsu1, T. Sogawa1, and H. Yamaguchi, “Controlling quality factor in micromechanical resonators by carrier excitation,” Appl. Phys. Express 2, 035001 (2009).
[CrossRef]

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

2007 (1)

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

2006 (1)

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

2000 (2)

T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
[CrossRef]

L. C. Kimerling, “Photons to the resque: microelectronics becomes microphotonics,” Electrochem. Soc. Interface 9, 28–31 (2000).

1996 (1)

G. Ghosh, “Temperature dispersion of refractive indices in semiconductors,” J. Appl. Phys. 79(12), 9388–9389 (1996).
[CrossRef]

1990 (1)

H. K. Choi and C. A. Wang, “InGaAs/InGaAs strained single quantum well diode lasers with extremely low threshold current densisty and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[CrossRef]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef]

1983 (1)

G. C. Osbourn, “InGaAs-InGaAs strained-layer superlattices: A proposal for useful, new electronic materials,” Phys. Rev. B 27(8), 5126–5128 (1983).
[CrossRef]

1978 (1)

A. L. Ruoff, “On the ultimate yield strength of solids,” J. Appl. Phys. 49(1), 197–200 (1978).
[CrossRef]

1974 (1)

D. K. Biegelesen, “Photoelestic tensor of silicon and the volume dependence of the avarate Gap,” Rhys. Reb. Lett. 32(21), 1196–1199 (1974).
[CrossRef]

Alan, T.

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

Biegelesen, D. K.

D. K. Biegelesen, “Photoelestic tensor of silicon and the volume dependence of the avarate Gap,” Rhys. Reb. Lett. 32(21), 1196–1199 (1974).
[CrossRef]

Bose, P.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Choi, H. K.

H. K. Choi and C. A. Wang, “InGaAs/InGaAs strained single quantum well diode lasers with extremely low threshold current densisty and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[CrossRef]

Cohen, E.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Ghosh, G.

G. Ghosh, “Temperature dispersion of refractive indices in semiconductors,” J. Appl. Phys. 79(12), 9388–9389 (1996).
[CrossRef]

Hamann, H. F.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Hines, M. A.

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

Hu, Z.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Ishikawa, Y.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Isono, Y.

T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
[CrossRef]

Ito, D.

H. Okamoto and D. Ito, “K. Onomitsu1, T. Sogawa1, and H. Yamaguchi, “Controlling quality factor in micromechanical resonators by carrier excitation,” Appl. Phys. Express 2, 035001 (2009).
[CrossRef]

Kimerling, L. C.

L. C. Kimerling, “Photons to the resque: microelectronics becomes microphotonics,” Electrochem. Soc. Interface 9, 28–31 (2000).

Lacey, J. A.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Lee, C.

W. Xiang and C. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1323–1326 (2009).
[CrossRef]

Lim, P. H.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Namazu, T.

T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
[CrossRef]

Okamoto, H.

H. Okamoto and D. Ito, “K. Onomitsu1, T. Sogawa1, and H. Yamaguchi, “Controlling quality factor in micromechanical resonators by carrier excitation,” Appl. Phys. Express 2, 035001 (2009).
[CrossRef]

Osbourn, G. C.

G. C. Osbourn, “InGaAs-InGaAs strained-layer superlattices: A proposal for useful, new electronic materials,” Phys. Rev. B 27(8), 5126–5128 (1983).
[CrossRef]

Park, S.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Ruoff, A. L.

A. L. Ruoff, “On the ultimate yield strength of solids,” J. Appl. Phys. 49(1), 197–200 (1978).
[CrossRef]

Sengupta, D.

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

Tanaka, T.

T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
[CrossRef]

Van de Walle,, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef]

Wada, K.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Wakil, J.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Wang, C. A.

H. K. Choi and C. A. Wang, “InGaAs/InGaAs strained single quantum well diode lasers with extremely low threshold current densisty and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[CrossRef]

Weger, A.

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

Xiang, W.

W. Xiang and C. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1323–1326 (2009).
[CrossRef]

Zehnder, A. T.

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

Appl. Phys. Express (1)

H. Okamoto and D. Ito, “K. Onomitsu1, T. Sogawa1, and H. Yamaguchi, “Controlling quality factor in micromechanical resonators by carrier excitation,” Appl. Phys. Express 2, 035001 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

H. K. Choi and C. A. Wang, “InGaAs/InGaAs strained single quantum well diode lasers with extremely low threshold current densisty and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[CrossRef]

T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, “Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” Appl. Phys. Lett. 89(23), 231905 (2006).
[CrossRef]

Electrochem. Soc. Interface (1)

L. C. Kimerling, “Photons to the resque: microelectronics becomes microphotonics,” Electrochem. Soc. Interface 9, 28–31 (2000).

IEEE J. Sel. Top. Quantum Electron. (1)

W. Xiang and C. Lee, “Nanophotonics sensor based on microcantilever for chemical analysis,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1323–1326 (2009).
[CrossRef]

IEEE J. Solid-state Circuits (1)

H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements,” IEEE J. Solid-state Circuits 42(1), 56–65 (2007).
[CrossRef]

J. Appl. Phys. (2)

A. L. Ruoff, “On the ultimate yield strength of solids,” J. Appl. Phys. 49(1), 197–200 (1978).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive indices in semiconductors,” J. Appl. Phys. 79(12), 9388–9389 (1996).
[CrossRef]

J. Micromech. Syst. (1)

T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” J. Micromech. Syst. 9(4), 450–459 (2000).
[CrossRef]

Opt. Express (1)

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. C. Osbourn, “InGaAs-InGaAs strained-layer superlattices: A proposal for useful, new electronic materials,” Phys. Rev. B 27(8), 5126–5128 (1983).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef]

Rhys. Reb. Lett. (1)

D. K. Biegelesen, “Photoelestic tensor of silicon and the volume dependence of the avarate Gap,” Rhys. Reb. Lett. 32(21), 1196–1199 (1974).
[CrossRef]

Other (2)

K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H.-C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, “Si Microphotonics for optical interconnection,” in Optical Interconnects, The Silicon Approach, eds L. Pavesi, G. Guillot (Springer Berlin Heidelberg New Yok, 2006), pp. 291–310.

O. Madelung, “Semiconductors- Basic Data” 2nd edition (Springer-Verlag Berlin Heidelberg, 1996) p.12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Indirect bandgap energies calculated for Si under [100] uniaxial stress. HH and LH indicate heavy-hole and light-hole valence bands respectively.

Fig. 2
Fig. 2

A typical strain distribution for a Si micro-beam structure. The x, y, and z axes correspond to the crystallographic axes [100], [010] and [001] respectively. Positive strain values are tensile.

Fig. 3
Fig. 3

Fabrication process of Si beams. Patterning of top Si layer through EB lithography and reactive ion etching were done. BOX layer was removed by HF wet etching.

Fig. 4
Fig. 4

SEM image taken for a fabricated Si beam sample

Fig. 5
Fig. 5

Top optical microscopic images of fabricated Si beam and micro-probe needle (a) without and (b) with applying force. The most strained area was excited by ~4 mW 457 nm laser to get PL while external stress was applied on three points (A, B, and C) on beam by microprobe tip.

Fig. 6
Fig. 6

Typical PL spectra from a Si beam with and without external stresses. Straight and A~C indicate spectra of the beam with different amount of strain. Sharp peaks observed were due to the Fabry-Perot resonances occurred in the beam, and thus ignored in this context.

Fig. 7
Fig. 7

Comparison between theoretical bandgap shrinkage under tensile strain and experimental results. Strain in experimental data were estimated by finite element analysis as shown above, and bandgap energies were determined from peak positions of PL spectra. The error bars show the possible error of the beam position pushed by the microprober: the positioning error was assumed ± 2 μm.

Metrics