Abstract

Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  3. K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003).
    [CrossRef]
  4. R. M. Measures, Structural monitoring with fiber optic technology. San Diego: Academic Press, (2001).
  5. J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
    [CrossRef] [PubMed]
  6. S. Kieckbusch, C. Knothe, and E. Brinkmeyer, “Fast and accurate characterization of fiber Bragg gratings with high spatial and spectral resolution,” in OFC 2003. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, vol. 1. Washington DC USA: Opt. Soc. America, paper WL2 (2003).
  7. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  8. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
    [CrossRef]
  9. P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
    [CrossRef] [PubMed]
  10. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
    [CrossRef]
  11. S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999).
    [CrossRef]
  12. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
    [CrossRef]
  13. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [CrossRef]
  14. J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002).
    [CrossRef]
  15. O. H. Waagaard, “Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry,” J. Lightwave Technol. 23(2), 909–914 (2005).
    [CrossRef]
  16. P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
    [CrossRef]
  17. P. Giaccari, “Fiber Bragg gratings characterization by Optical Low Coherence Reflectometry and sensing applications,” Swiss Federal Institute of Technology, Microengineering Department, PhD thesis No. 2726, Lausanne (2003).
  18. K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
    [CrossRef]
  19. S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
    [CrossRef]
  20. Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
    [CrossRef]
  21. Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
    [CrossRef]
  22. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
    [CrossRef]
  23. F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
    [CrossRef]
  24. M. Lai, J. Botsis, D. Coric, and J. Cugnoni, “On the degree of conversion and coefficient of thermal expansion of a single fiber composite using a FBG sensor,” IVth International Conference on Times of Polymers (Top) and Composites 1042, 135–137 (2008).

2007 (1)

F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
[CrossRef]

2005 (3)

O. H. Waagaard, “Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry,” J. Lightwave Technol. 23(2), 909–914 (2005).
[CrossRef]

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

2003 (2)

P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
[CrossRef] [PubMed]

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003).
[CrossRef]

2002 (4)

J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002).
[CrossRef]

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
[CrossRef]

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

2000 (1)

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

1999 (2)

S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[CrossRef]

1997 (2)

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1994 (1)

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

1993 (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

1991 (1)

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Arce-Diego, J. L.

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Botsis, J.

F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
[CrossRef]

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

Cantwell, W. J.

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003).
[CrossRef]

Colpo, F.

F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dunkel, G. R.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

Dyer, S. D.

S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Feced, R.

J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[CrossRef]

Fonjallaz, P. Y.

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Froggatt, M. E.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Giaccari, P.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
[CrossRef] [PubMed]

Gifford, D. K.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

Gilgen, H. H.

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Hongo, A.

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

Humbert, L.

F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
[CrossRef]

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

Ikeda, Y.

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kuang, K. S. C.

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003).
[CrossRef]

Kurosawa, Y.

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

Lambelet, P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Limberger, H. G.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
[CrossRef] [PubMed]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

López-Higuera, J. M.

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

López-Ruisánchez, R.

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

Meltz, G.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Mizutani, T.

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

Morey, W. W.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[CrossRef]

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

Okabe, Y.

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Rochford, K. B.

S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999).
[CrossRef]

Salathé, R. P.

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
[CrossRef] [PubMed]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

Satori, K.

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

Skaar, J.

J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002).
[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Soller, B. J.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

Takeda, N.

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
[CrossRef]

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

Takeda, S.

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
[CrossRef]

Tsuji, R.

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

Waagaard, O. H.

O. H. Waagaard, “Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry,” J. Lightwave Technol. 23(2), 909–914 (2005).
[CrossRef]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Wolfe, M. S.

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

Yashiro, S.

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[CrossRef]

Zimmer, C.

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

Appl. Mech. Rev. (1)

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Comp. Part A (2)

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002).
[CrossRef]

Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002).
[CrossRef]

Compos. Sci. Technol. (2)

Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002).
[CrossRef]

F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007).
[CrossRef]

Electron. Lett. (1)

S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999).
[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993).
[CrossRef]

IEEE Proc. Optoelectron. (1)

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994).
[CrossRef]

J. Lightwave Technol. (2)

O. H. Waagaard, “Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry,” J. Lightwave Technol. 23(2), 909–914 (2005).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002).
[CrossRef]

Opt. Express (1)

B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003).
[CrossRef] [PubMed]

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997).
[CrossRef] [PubMed]

Proc. SPIE (2)

K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000).
[CrossRef]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Smart Mater. Struct. (1)

P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005).
[CrossRef]

Other (4)

P. Giaccari, “Fiber Bragg gratings characterization by Optical Low Coherence Reflectometry and sensing applications,” Swiss Federal Institute of Technology, Microengineering Department, PhD thesis No. 2726, Lausanne (2003).

S. Kieckbusch, C. Knothe, and E. Brinkmeyer, “Fast and accurate characterization of fiber Bragg gratings with high spatial and spectral resolution,” in OFC 2003. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, vol. 1. Washington DC USA: Opt. Soc. America, paper WL2 (2003).

R. M. Measures, Structural monitoring with fiber optic technology. San Diego: Academic Press, (2001).

M. Lai, J. Botsis, D. Coric, and J. Cugnoni, “On the degree of conversion and coefficient of thermal expansion of a single fiber composite using a FBG sensor,” IVth International Conference on Times of Polymers (Top) and Composites 1042, 135–137 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the optical low-coherence reflectometer. SLD: superluminescent diode; TL: tunable laser; OPS: optical switch; C: circulator; PM: piezoelectric modulator; TS: translation stage; FBG: fiber Bragg grating; CPL: 3 dB coupler; BD: balanced detector; PCL: polarization controller; LIA: lock-in amplifier. PC: personal computer.

Fig. 2
Fig. 2

Wavelength shift as a function of the applied axial stress for (a) standard single-mode fiber (SMF-28, 125 μm) and (b) for a small-diameter fiber (SF-50, 50 μm).

Fig. 3
Fig. 3

Rectangular epoxy sample (10x10x40 mm) with embedded FBG (a) and mould for specimen preparation (b): RB: rubber stripes; PL: plane to support the fiber; CP: cap with openings.

Fig. 4
Fig. 4

Reflection spectra (a) and OLCR phase measurement (b) for FBGs written in SFM-28 before (black) and after embedding (red). The reflectivity was normalized to 0 dB.

Fig. 5
Fig. 5

Reflection spectra (a) and OLCR phase measurement (b) for FBGs written in small diameter fibers from Silitec SA (SF-50) before (black) and after embedding (red). The reflectivity was normalized to 0 dB.

Fig. 6
Fig. 6

Distribution of the non-homogenous internal strain along the FBG length inside epoxy specimen measured (a) and numerical simulation considering a uniform equivalent temperature change of 52 °C (b) for SMF-28 and small diameter fibers.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ B ( z ) = ( 1 λ D + 1 4 π n e f f d ϕ q ( z ) d z ) 1
Δ λ B ( z ) λ D = ( 1 p e ) ε z ( z ) = ( 1 p e ) E σ z ( z )
p e = n c o r e 2 2 [ p 12 ν ( p 11 + p 12 ) ]

Metrics