Abstract

We report on stable optical waveguides fabricated by soft-proton exchange in periodically-poled congruent lithium tantalate in the α-phase. The channel waveguides are characterized in the telecom wavelength range in terms of both linear properties and frequency doubling. The measurements yield a nonlinear coefficient of about 9.5pm/V, demonstrating that the nonlinear optical properties of lithium tantalate are left nearly unaltered by the process.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
    [Crossref] [PubMed]
  2. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
    [Crossref]
  3. G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
    [Crossref]
  4. G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
    [Crossref]
  5. A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
    [Crossref]
  6. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
    [Crossref]
  7. I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).
  8. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO/sub 3/ waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
    [Crossref]
  9. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
    [Crossref]
  10. A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
    [Crossref]
  11. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999).
    [Crossref]
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [Crossref]
  13. D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
    [Crossref]
  14. G. I. Stegeman, and G. Assanto, “Nonlinear Integrated Optical Devices,” Chap. 11, pp. 381–418 in Integrated Optical Circuits and Components: Design and Application, ed. E. J. Murphy, (M. Dekker, New York, 1999).
  15. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
    [Crossref]
  16. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO/sub 3/ as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
    [Crossref]
  17. Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995).
    [Crossref]
  18. M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti, “High quality buried waveguides in stoichiometric LiTaO/sub 3/ for nonlinear frequency conversion,” Opt. Express 14(1), 248–253 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-1-248 .
    [Crossref] [PubMed]
  19. V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
    [Crossref]
  20. P. Baldi, S. Nouh, K. E. Hadi, M. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Quasi-phase-matched parametric fluorescence in room-temperature lithium tantalate waveguides,” Opt. Lett. 20(13), 1471–1473 (1995).
    [Crossref] [PubMed]
  21. K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, V. A. Fedorov, and Y. N. Korkishko, “Control of proton exchange for LiTaO3 waveguides and the crystal structure of H/sub x/Li/sub (1-x)/TaO/sub 3/,” Opt. Lett. 20(16), 1698–1700 (1995).
    [Crossref] [PubMed]
  22. A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
    [Crossref]
  23. A. Parisi, A. C. Cino, A. C. Busacca, and S. Riva-Sanseverino, “Nonstoichiometric silica mask for fabricating reverse proton-exchanged waveguides in lithium niobate crystals,” Appl. Opt. 43(4), 940–943 (2004).
    [Crossref] [PubMed]
  24. M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
    [Crossref]
  25. I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
    [Crossref]
  26. S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, “Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects,” J. Opt. Soc. Am. B 24(7), 1564–1570 (2007).
    [Crossref]
  27. A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
    [Crossref]

2008 (3)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (1)

2003 (2)

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

2002 (1)

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

2001 (1)

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

2000 (3)

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
[Crossref]

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

1999 (2)

1998 (2)

G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO/sub 3/ as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998).
[Crossref]

1997 (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[Crossref]

1995 (4)

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

P. Baldi, S. Nouh, K. E. Hadi, M. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Quasi-phase-matched parametric fluorescence in room-temperature lithium tantalate waveguides,” Opt. Lett. 20(13), 1471–1473 (1995).
[Crossref] [PubMed]

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, V. A. Fedorov, and Y. N. Korkishko, “Control of proton exchange for LiTaO3 waveguides and the crystal structure of H/sub x/Li/sub (1-x)/TaO/sub 3/,” Opt. Lett. 20(16), 1698–1700 (1995).
[Crossref] [PubMed]

Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995).
[Crossref]

1993 (1)

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

1992 (2)

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

1986 (1)

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Aboud, I.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

Akimov, D. A.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Aschieri, P.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

Assanto, G.

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
[Crossref]

S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, “Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects,” J. Opt. Soc. Am. B 24(7), 1564–1570 (2007).
[Crossref]

G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
[Crossref]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[Crossref]

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

Baldi, P.

Banfi, G. P.

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

Barety, J. P.

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Bassi, P.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

Brener, I.

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Buryak, A.

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Busacca, A. C.

A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
[Crossref]

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, “Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects,” J. Opt. Soc. Am. B 24(7), 1564–1570 (2007).
[Crossref]

A. Parisi, A. C. Cino, A. C. Busacca, and S. Riva-Sanseverino, “Nonstoichiometric silica mask for fabricating reverse proton-exchanged waveguides in lithium niobate crystals,” Appl. Opt. 43(4), 940–943 (2004).
[Crossref] [PubMed]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Canali, C.

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Carnera, A.

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Cherchi, M.

Chou, M. H.

Cianci, E.

Cino, A. C.

Clausen, C. B.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
[Crossref]

Colace, L.

Cristiani, I.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

D’Asaro, E.

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

D'Asaro, E.

A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
[Crossref]

de Micheli, M.

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

De Micheli, M. P.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, V. A. Fedorov, and Y. N. Korkishko, “Control of proton exchange for LiTaO3 waveguides and the crystal structure of H/sub x/Li/sub (1-x)/TaO/sub 3/,” Opt. Lett. 20(16), 1698–1700 (1995).
[Crossref] [PubMed]

Degiorgio, V.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

Delacourt, D.

DeSalvo, R.

Di Trapani, P.

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Dukel’skii, K. V.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

El Hadi, K.

Fedorov, V. A.

Fejer, M. M.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO/sub 3/ waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[Crossref]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Foglietti, V.

Fujii, Y.

Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995).
[Crossref]

Furukawa, Y.

Gallo, K.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[Crossref]

Grundkotter, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Hadi, K. E.

Hagan, D. J.

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref] [PubMed]

Hatano, H.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Khokhlov, A. V.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Kiefer, W.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Kitamura, K.

Kondo, Y.

Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995).
[Crossref]

Kondrat’ev, Y. N.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Korkishko, Y. N.

Lee, J. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Lee, Y. L.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Leycuras, A.

Liberale, C.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

Lobino, M.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

Maksimenka, R.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Mamyshev, P. V.

Mamysheva, N. A.

Marangoni, M.

Mazzi, G.

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Mecozzi, A.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
[Crossref]

Meyn, J. P.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

Micheli, M.

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Min, Y. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Niwa, K.

Nouh, S.

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Ostrowsky, D. B.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

P. Baldi, S. Nouh, K. E. Hadi, M. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Quasi-phase-matched parametric fluorescence in room-temperature lithium tantalate waveguides,” Opt. Lett. 20(13), 1471–1473 (1995).
[Crossref] [PubMed]

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Papuchon, M.

P. Baldi, S. Nouh, K. E. Hadi, M. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Quasi-phase-matched parametric fluorescence in room-temperature lithium tantalate waveguides,” Opt. Lett. 20(13), 1471–1473 (1995).
[Crossref] [PubMed]

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

Parameswaran, K. R.

Parisi, A.

Pasquazi, A.

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Ramponi, R.

Rampulla, A.

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

Rastogi, V.

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Rini, M.

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

Riva Sanseverino, S.

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

Riva-Sanseverino, S.

Schiek, R.

G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
[Crossref]

Schmitt, M.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Sheik-Bahae, M.

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref] [PubMed]

Shevandin, V. S.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Shtaif, M.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
[Crossref]

Skryabin, D.

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Stegeman, G.

Stegeman, G. I.

G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
[Crossref]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[Crossref]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

Stivala, S.

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

Takekawa, S.

Tartarini, G.

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

Trillo, S.

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Van Stryland, E. W.

Vanherzeele, H.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

VanStryland, E.

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

Wang, Z.

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

Zheltikov, A. M.

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003).
[Crossref]

Appl. Phys. Lett. (4)

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993).
[Crossref]

G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995).
[Crossref]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[Crossref]

A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[Crossref]

A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000).
[Crossref]

A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008).
[Crossref]

J. Lightwave Technol. (1)

M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995).
[Crossref]

Opt. Commun. (1)

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (1)

V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000).
[Crossref]

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[Crossref]

Phys. Rep. (1)

A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002).
[Crossref]

Thin Solid Films (1)

G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998).
[Crossref]

Other (1)

G. I. Stegeman, and G. Assanto, “Nonlinear Integrated Optical Devices,” Chap. 11, pp. 381–418 in Integrated Optical Circuits and Components: Design and Application, ed. E. J. Murphy, (M. Dekker, New York, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Near infrared mode measured at the output of the 13µm-wide channel waveguide at 1550nm; (b) and (c) graph horizontal and vertical profiles, respectively. Here the LT-air surface corresponds to the zero of the coordinate z in (a) and (c).

Fig. 2
Fig. 2

TM00 modal area (at 1/2 peak) measured at 1550nm versus nominal waveguide width.

Fig. 3
Fig. 3

SH Modal profiles measured at the respective resonances and taken at the output of a 13µm-wide channel: (a) fundamental mode TM00; (b) TM01mode.

Fig. 4
Fig. 4

(a) Measured normalized SHG conversion efficiency versus FF wavelength. The three peaks correspond to the FF interaction with the TM00 (solid line), TM20 (dashed line) and TM01 (dotted line) SH modes. (b) SH power versus FF excitation with a TM00 mode: data (symbols) and parabolic fit (solid line).

Fig. 5
Fig. 5

PM wavelength shift versus waveguide width.

Metrics