Abstract

Application of the two-photon polymerization (2PP) technique for the fabrication of submicron-size relief of radial binary diffractive optical elements (DOE’s) is studied. Binary DOE’s for the formation of special longitudinal intensity distribution (axial light segment) are realized. Interferometric investigations of the diffractive relief produced by the 2PP-technique and investigations of optical properties of the formed elements are presented. Results of computer simulations are in good agreement with the experimental observations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  2. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [CrossRef]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  4. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  5. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [CrossRef] [PubMed]
  6. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  7. L. L. Doskolovich, D. L. Golovashkin, N. L. Kazanskiy, S. N. Khonina, V. V. Kotlyar, V. S. Pavelyev, R. V. Skidanov, V. A. Soifer, V. S. Solovyev, G. V. Uspleniev, and A. V. Volkov, Methods for Computer Design of Diffractive Optical Elements, Ed. by V. A. Soifer (John Wiley, 2002).
  8. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
    [CrossRef] [PubMed]
  9. B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
    [CrossRef]
  10. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
    [CrossRef]
  11. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  12. K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
    [CrossRef]
  13. L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992).
    [CrossRef]
  14. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  15. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  16. J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993).
    [CrossRef] [PubMed]
  17. J. J. Lunazzi, D. S. F. Magalhães, “Photographing by means of a diffractive axicon,” http://arxiv.org/pdf/physics/0701234 .
  18. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
    [CrossRef] [PubMed]
  19. M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
    [CrossRef] [PubMed]
  20. S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).
  21. A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992).
    [CrossRef] [PubMed]
  22. D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
    [CrossRef]
  23. M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002).
    [CrossRef]

2010

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

2008

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

2007

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

2006

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
[CrossRef] [PubMed]

S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).

2004

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
[CrossRef] [PubMed]

2003

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
[CrossRef]

2002

M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002).
[CrossRef]

2001

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1999

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

1997

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

1993

J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993).
[CrossRef] [PubMed]

1992

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992).
[CrossRef] [PubMed]

L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Arimoto, R.

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

Bachmann, A. H.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

Barlow, S.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Borra, E. F.

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
[CrossRef] [PubMed]

Candeloro, P.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Chen, V. W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

Chichkov, B.

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Chichkov, B. N.

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Cohen, A. L.

A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992).
[CrossRef] [PubMed]

Cojoc, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Cronauer, C.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Das, G.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

De Angelis, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Di Fabrizio, E.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Domann, G.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Dong, W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Egbert, A.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Fortin, M.

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
[CrossRef] [PubMed]

Fröhlich, L.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Gentile, F.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Greenleaf, J. F.

J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993).
[CrossRef] [PubMed]

L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992).
[CrossRef]

Gu, M.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Hales, J. M.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

Haske, W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Hinze, U.

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Houbertz, R.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Jia, B.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Jian-yu, L.

L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992).
[CrossRef]

Kachalov, D. G.

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

Khonina, S. H.

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Kim, H.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Koch, J.

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Korolkov, V. P.

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
[CrossRef] [PubMed]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lasser, T.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

Lee, B.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Lee, K. S.

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

Leitgeb, R. A.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

Li, J.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Liberale, C.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Lu, J. Y.

J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993).
[CrossRef] [PubMed]

Marder, S. R.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Maruo, S.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Meister, M.

M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002).
[CrossRef]

Moiseev, O. Y.

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Nakamura, O.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Nasyrov, R. K.

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
[CrossRef] [PubMed]

Obata, K.

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Ostendorf, A.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Ovsianikov, A.

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Pavelyev, V. S.

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Perry, J. W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Piché, M.

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
[CrossRef] [PubMed]

Popall, M.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Reichelt, S.

S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).

Rolland, J. P.

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

Röskel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Saloma, C.

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

Sandy Lee, I.-Y.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Schulz, J.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Serbin, J.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Shimansky, R. V.

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
[CrossRef] [PubMed]

Skidanov, R. V.

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Steinmann, L.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

Tiziani, H.

S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).

Villiger, M.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

Wang, K.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
[CrossRef]

Winfield, R. J.

M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002).
[CrossRef]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Yin, Ch.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
[CrossRef]

Zappe, H.

S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).

Zeng, L.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
[CrossRef]

Appl. Opt.

V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006).
[CrossRef] [PubMed]

R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
[CrossRef] [PubMed]

A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007).
[CrossRef]

Microelectron. Eng.

G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010).
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Opt. Commun.

K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003).
[CrossRef]

M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002).
[CrossRef]

Opt. Express

M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

Opt. Lett.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

Proc. SPIE

L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992).
[CrossRef]

S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).

D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010).
[CrossRef]

Ultrason. Imaging

J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993).
[CrossRef] [PubMed]

Other

J. J. Lunazzi, D. S. F. Magalhães, “Photographing by means of a diffractive axicon,” http://arxiv.org/pdf/physics/0701234 .

L. L. Doskolovich, D. L. Golovashkin, N. L. Kazanskiy, S. N. Khonina, V. V. Kotlyar, V. S. Pavelyev, R. V. Skidanov, V. A. Soifer, V. S. Solovyev, G. V. Uspleniev, and A. V. Volkov, Methods for Computer Design of Diffractive Optical Elements, Ed. by V. A. Soifer (John Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical scheme for the formation of a longitudinal intensity distribution.

Fig. 2
Fig. 2

a) Phase function of the designed DOE and b) calculated longitudinal intensity distribution on the optical axis.

Fig. 3
Fig. 3

Schematical setup used for 2PP: S – shutter, λ/2 plate, P – polarizer, O1,O2 - objectives; L1–L4 - lenses; DM – dichroic mirror; LED – light-emitting diode, CMOS - camera; PM - power meter; and XYZ stages are used to position the sample.

Fig. 4
Fig. 4

Optical (a) and SEM (b) views of the recorded binary DOEs. The scale-bar is 100 µm.

Fig. 5
Fig. 5

a) White-light interferometry image of the DOE central ring, b) X-,Y-profiles of this ring.

Fig. 6
Fig. 6

Intensity distribution in the focusing plane with a maximum value at the optical axis (a) and longitudinal intensity distribution (b) generated by the 2PP fabricated DOE.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F ( ρ , z ) = i k z e i k z exp ( i k ρ 2 2 z ) × × 0 R exp ( r 2 σ 2 ) exp [ i φ ( r ) + i k r 2 2 z ] J 0 ( k r ρ z ) r   d ​ r ,
F ( 0 , z ) = i k z exp ( i k z ) × × 0 R exp ( r 2 σ 2 ) exp [ i φ ( r ) + i k r 2 2 z ] r   d r .
Φ ( φ ( r ) ) = i = 1 N | I ( z i ) I ¯ ( z i ) C m | ,
Φ ( φ ( r ) ) = i = 1 N | exp ( I ( z i ) μ I ¯ ( z i ) C m μ I ¯ ( z i ) C m ) 1 | ,
e = ( i = 1 N I ( z i ) ) ( i = 1 N I ¯ ( z i ) ) 1 .
δ = i = 1 N ( I ( z i ) μ C m I ¯ ( z i ) ) 2 i = 1 N μ 2 C m 2 I ¯ 2 ( z i ) .

Metrics