Abstract

We theoretically investigate resonant absorption in a multiple-port surface-plasmon polaritons (SPP) resonator near the condition of critical coupling at which internal loss is comparable to radiation coupling. We show that total absorption is obtainable in a multiple-port system by properly configuring multiple coherent lightwaves at the condition of critical coupling. We further derive analytic expressions for the partial absorbance at each port, the total absorbance, and their sum rule, which provide a non-perturbing method to probe coupling characteristics of highly localized optical modes. Rigorous simulation results modeling a surface-plasmon resonance grating in the multiple-order diffraction regime show excellent agreements with the analytic expressions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  2. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  3. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  4. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
    [CrossRef] [PubMed]
  5. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1885 .
    [CrossRef] [PubMed]
  6. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
    [CrossRef]
  7. K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
    [CrossRef]
  8. E. Kretchmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  9. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [CrossRef]
  10. R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffracted grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  11. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [CrossRef] [PubMed]
  12. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  14. K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
    [CrossRef]
  15. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  16. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
    [CrossRef] [PubMed]
  17. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
    [CrossRef]
  18. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [CrossRef]
  19. Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
    [CrossRef] [PubMed]
  20. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  21. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
    [CrossRef]
  22. R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
    [CrossRef] [PubMed]
  23. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  25. J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16, 1269 (2008), http://www.opticsinfobase.org/oe/abstra ct.cfm ?URI=oe-16-2-1269.
  26. A. Lakhtakia, “Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars,” Microw. Opt. Technol. Lett. 40(2), 160–161 (2004).
    [CrossRef]
  27. J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
    [CrossRef] [PubMed]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

2008 (5)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

2006 (1)

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

2004 (2)

A. Lakhtakia, “Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars,” Microw. Opt. Technol. Lett. 40(2), 160–161 (2004).
[CrossRef]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1885 .
[CrossRef] [PubMed]

2003 (1)

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[CrossRef]

2002 (1)

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

2000 (2)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1997 (1)

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

1987 (1)

R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
[CrossRef] [PubMed]

1982 (1)

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

1976 (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

1968 (2)

E. Kretchmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

1902 (1)

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffracted grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bartlet, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bliokh, K. Yu.

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Bliokh, Y. P.

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Bliokh, Yu. P.

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Britton, B.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Brudny, V. L.

R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Chandezon, J.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

Cornet, G.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

Depine, R. A.

R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
[CrossRef] [PubMed]

Ding, Y.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1885 .
[CrossRef] [PubMed]

Donkor, E.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Dupuis, M. T.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

Fan, S.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Felsteiner, J.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Freilikher, V.

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Friesem, A. A.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Genack, A. Z.

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Glasberg, S.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Hu, B.

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Hutley, M. C.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kim, P. S.

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

Kretchmann, E.

E. Kretchmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Kurihara, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

LaComb, R.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, “Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars,” Microw. Opt. Technol. Lett. 40(2), 160–161 (2004).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lee, K. J.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Magnusson, R.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1885 .
[CrossRef] [PubMed]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Maystre, D.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Nori, F.

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Oh, C. H.

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Reather, H.

E. Kretchmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Rosenblatt, D.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Savel’ev, S.

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Sebbah, P.

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

Sharon, A.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

Shokooh-Saremi, M.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Silva, H.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Simon, J. M.

R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
[CrossRef] [PubMed]

Slutsker, Y. Z.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Song, S. H.

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Suh, W.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[CrossRef]

Suzuki, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffracted grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Yoon, J.

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Anal. Chem. (1)

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

J. Opt. Soc. Am. A (2)

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14(3), 588–595 (1997).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

A. Lakhtakia, “Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars,” Microw. Opt. Technol. Lett. 40(2), 160–161 (2004).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlet, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Commun. (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19(3), 431–436 (1976).
[CrossRef]

Opt. Express (2)

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1885 .
[CrossRef] [PubMed]

J. Yoon, S. H. Song, C. H. Oh, and P. S. Kim, “Backpropagating modes of surface polaritons on a cross-negative interface,” Opt. Express 13(2), 417–427 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-417 .
[CrossRef] [PubMed]

Opt. Lett. (1)

R. A. Depine, V. L. Brudny, and J. M. Simon, “Phase behavior near total absorption by a metallic grating,” Opt. Lett. 12(3), 143–145 (1987).
[CrossRef] [PubMed]

Philos. Mag. (1)

R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffracted grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

K. Yu. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretchmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Other (3)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).

J. Yoon, S. H. Song, and J.-H. Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16, 1269 (2008), http://www.opticsinfobase.org/oe/abstra ct.cfm ?URI=oe-16-2-1269.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a general SPP resonator with N coupling ports. N pairs of incoming ( + ) and outgoing (-) radiation modes expressed by fm ± (t) are coupled to a single resonance mode with amplitude g(t). Cnm and κm ± represent direct scattering coefficients from port m to port n and coupling coefficients between g(t) and fm ± (t) at port m, respectively.

Fig. 2
Fig. 2

Resonance behavior of a dissipative SPP resonator for the three cases of under coupling, critical coupling, and over coupling. (a) Phasor representation (blue arrow) of the outgoing response, ρ tot(ω). (b) Circular traces of ρ tot(ω) for three different cases: red, green, and blue circles correspond to under coupling (γ rad = 0.5γ int), critical coupling (γ int = γ rad), and over coupling (γ rad = 4γ int), respectively. Absorption and phase spectra are depicted in (c) and (d), respectively, for the three cases with the same colours as in (b).

Fig. 3
Fig. 3

Numerical simulation results of strong absorption induced by a grating coupled SPP resonator. (a) Schematic of the SPP resonator with a metal grating of 700-nm-period Gaussian grooves. (b) Zero-th order reflectance (R 0) showing SPP dispersion relations of which curves are marked by diffraction order of m. (c), (d), and (e) show the peak absorbances at three different resonance wavelengths. The square symbols and the continuous curves respectively represent the peak values obtained numerically and analytically.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d d t g ( t ) = [ i ( ω ω 0 ) γ tot ] g ( t ) + ( κ + | * ) | f + ( t ) ,
| f ( t ) = C | f + ( t ) + g ( t ) | κ .
E m ( r , t ) = [ f m + ( t ) e m ( r ) + f m ( t ) e m * ( r ) ] e i ω t + ( C .C ) ,
H m ( r , t ) = [ f m + ( t ) h m ( r ) f m ( t ) h m * ( r ) ] e i ω t + ( C .C ) ,
E R ( r , t ) = g ( t ) e R ( r ) e i ω t + ( C .C ) ,
H R ( r , t ) = g ( t ) h R ( r ) e i ω t + ( C .C ) ,,
d d t g ( t ) = ( γ rad γ int ) g ( t ) ,
0 = C | f + ( t ) + g ( t ) | κ ,
| f + ( t ) = F 0 | κ * ,
| f ( t ) = F 0  [ 2 γ rad i ( ω ω 0 ) + γ tot 1 ] | κ ,
A tot ( ω ) = 1 f | f f + | f + = 4 γ rad γ int ( ω ω 0 ) 2 + γ tot 2 ,
| f ( t ) = e i 2 ϕ [ 2 γ rad i ( ω ω 0 ) + γ tot 1 ] | f + ( t ) * ,
ρ tot ( ω ) = 2 γ rad i ( ω ω 0 ) + γ tot 1 ,
A q ( ω ) = 4 γ q γ int ( ω ω 0 ) 2 + γ tot ,
q = 1 N A q ( ω 0 ) = A tot ( ω 0 ) = 4 η rad ( 1 η rad ) ,
| ψ m | 2 = γ m γ rad = A m ( ω 0 ) A tot ( ω 0 ) ,
A ( 2 ) = A 1 + A 2 4 A 1 A 2 A 1 + A 2 sin 2 [ ( ϕ 1 ϕ 2 ) / 2 ] ,
ρ tot ( ω ) = η rad [ 1 + e i 2 α ( ω ) ] 1 ,
E m ( r , t ) = [ f m * ( t ) e m ( r ) + f m + * ( t ) e m * ( r ) ] e i ω t + ( C .C ) ,
H m ( r , t ) = [ f m * ( t ) h m ( r ) f m + * ( t ) h m * ( r ) ] e i ω t + ( C .C ) ,
E R ( r , t ) = g * ( t ) e R * ( r ) e i ω t + ( C .C ) ,
H R ( r , t ) = g * ( t ) h R * ( r ) e i ω t + ( C .C ) ,
{ f m ± ( t ) ,     g ( t ) }     { f m * ( t ) ,     g * ( t ) } .
d d t g * ( t ) = [ i ( ω ω 0 ) γ rad + γ int ] g * ( t ) + ( κ + | * ) | f ( t ) * ,
| f + ( t ) * = C | f ( t ) * + g * ( t ) | κ ,

Metrics