Abstract

In this paper, a new and simple rate-adaptive transmission scheme for free-space optical (FSO) communication systems with intensity modulation and direct detection (IM/DD) over atmospheric turbulence channels is analyzed. This scheme is based on the joint use of repetition coding and variable silence periods, exploiting the potential time-diversity order (TDO) available in the turbulent channel as well as allowing the increase of the peak-to-average optical power ratio (PAOPR). Here, repetition coding is firstly used in order to accomodate the transmission rate to the channel conditions until the whole time diversity order available in the turbulent channel by interleaving is exploited. Then, once no more diversity gain is available, the rate reduction can be increased by using variable silence periods in order to increase the PAOPR. Novel closed-form expressions for the average bit-error rate (BER) as well as their corresponding asymptotic expressions are presented when the irradiance of the transmitted optical beam follows negative exponential and gamma-gamma distributions, covering a wide range of atmospheric turbulence conditions. Obtained results show a diversity order as in the corresponding rate-adaptive transmission scheme only based on repetition codes but providing a relevant improvement in coding gain. Simulation results are further demonstrated to confirm the analytical results. Here, not only rectangular pulses are considered but also OOK formats with any pulse shape, corroborating the advantage of using pulses with high PAOPR, such as Gaussian or squared hyperbolic secant pulses. We also determine the achievable information rate for the rate-adaptive transmission schemes here analized.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn, and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298 (1997).
    [CrossRef]
  2. L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
    [CrossRef]
  3. W. Lim, C. Yun, and K. Kim, "BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels," Opt. Express 17(6), 4479-4484 (2009).
    [CrossRef] [PubMed]
  4. L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
    [CrossRef]
  5. X. Zhu, and J. M. Kahn, "Free-Space Optical Communication through Atmospheric Turbulence Channels," IEEE Trans. Commun. 50(8), 1293-1300 (2002).
    [CrossRef]
  6. J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, "Shannon capacities and error-correction codes for optical atmospheric turbulent channels," J. Opt. Netw. 4(9), 586-601 (2005).
    [CrossRef]
  7. M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
    [CrossRef]
  8. I. B. Djordjevic, "LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation," Opt. Express 15(16), 10,026-10,032 (2007).
    [CrossRef]
  9. I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. Neifeld, ""LDPC-Coded MIMO Optical Communication Over the Atmospheric Turbulence Channel," IEEE/OSA," J. Lightwave Technol. 26(5), 478-487 (2008).
    [CrossRef]
  10. F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, "Channel coding and time-diversity for optical wireless links," Opt. Express 17(2), 872-887 (2009).
    [CrossRef] [PubMed]
  11. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
    [CrossRef]
  12. S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
    [CrossRef]
  13. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
    [CrossRef]
  14. M. Simon, and V. Vilnrotter, "Alamouti-Type space-time coding for free-space optical communication with direct detection," IEEE Trans. Wirel. Comm. 4(1), 35-39 (2005).
    [CrossRef]
  15. A. García-Zambrana, "Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence," IEEE Commun. Lett. 11(5), 390-392 (2007).
    [CrossRef]
  16. C. Abou-Rjeily, "Orthogonal Space-Time Block Codes for Binary Pulse Position Modulation," IEEE Trans. Commun. 57(3), 602-605 (2009).
    [CrossRef]
  17. E. Bayaki, and R. Schober, "On space-time coding for free-space optical systems," IEEE Trans. Commun. 58(1), 58-62 (2010).
    [CrossRef]
  18. A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
    [CrossRef]
  19. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
    [CrossRef] [PubMed]
  20. J. Li, and M. Uysal, "Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection," in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654-2658 (2003).
  21. I. B. Djordjevic, and G. T. Djordjevic, "On the communication over strong atmospheric turbulence channels by adaptive modulation and coding," Opt. Express 17(20), 18,250-18,262 (2009).
    [CrossRef]
  22. I. B. Djordjevic, "Adaptive Modulation and Coding for Free-Space Optical Channels," IEEE/OSA Journal of Optical Communications and Networking 2(5), 221-229 (2010).
    [CrossRef]
  23. N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, "Optical Wireless Communications with Adaptive Subcarrier PSK Intensity Modulation," (2010). Accepted for publication in IEEE Global Telecommunications Conference (GLOBECOM ’10), URL http://users.auth.gr/nestoras.
  24. A. A. Ali, and I. A. Al-Kadi, "On the use of repetition coding with binary digital modulations on mobile channels," IEEE Trans. Vehicular Technol. 38(1), 14-18 (1989).
    [CrossRef]
  25. S. Trisno, I. I. Smolyaninov, S. D. Milner, and C. C. Davis, "Delayed diversity for fade resistance in optical wireless communication system through simulated turbulence," in Proc. SPIE, pp. 385-394 (2004).
    [CrossRef]
  26. S. Trisno, I. I. Smolyaninov, S. D. Milner, and C. C. Davis, "Characterization of delayed diversity optical wireless system to mitigate atmospheric turbulence induced fading," in Proc. SPIE, pp. 589,215.1-589,215.10 (2005).
  27. C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
    [CrossRef]
  28. M. K. Simon, and M.-S. Alouini, Digital Communications over Fading Channels, 2nd ed. (Wiley-IEEE Press, New Jersey, 2005).
  29. S. Hranilovic, and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Inf. Theory 49(6), 1385-1399 (2003).
    [CrossRef]
  30. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
    [CrossRef]
  31. I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).
  32. R. L. Fante, "Electromagnetic Beam Propagation in Turbulent Media," Proc. IEEE 63(12), 1669-1692 (1975).
    [CrossRef]
  33. C. Y. Young, L. C. Andrews, and A. Ishimaru, "Time-of-Arrival Fluctuations of a Space-Time Gaussian Pulse in Weak Optical Turbulence: an Analytic Solution," Appl. Opt. 37(33), 7655-7660 (1998).
    [CrossRef]
  34. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, ""Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels," IEEE/OSA," J. Lightwave Technol. 27(8), 974-979 (2009).
    [CrossRef]
  35. A. García-Zambrana, and A. Puerta-Notario, "Large change rate-adaptive indoor wireless infrared links using variable silence periods," Electron. Lett. 37(8), 524-525 (2001).
    [CrossRef]
  36. A. García-Zambrana, and A. Puerta-Notario, "RZ-Gaussian pulses reduce the receiver complexity in wireless infrared links at high bit rates," Electron. Lett. 35(13), 1059-1061 (1999).
    [CrossRef]
  37. A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
    [CrossRef]
  38. A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
    [CrossRef]
  39. N. D. Chatzidiamantis, G. K. Karagiannidis, and D. S. Michalopoulos, "On the Distribution of the Sum of Gamma-Gamma Variates and Application in MIMO Optical Wireless Systems," in Proc. IEEE Global Telecommunications Conf. GLOBECOM 2009, pp. 1-6 (2009).
    [CrossRef]
  40. V. S. Adamchik, and O. I. Marichev, "The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system," in Proc. Int. Conf. on Symbolic and Algebraic Computation, pp. 212-224 (Tokyo, Japan, 1990).
  41. Wolfram Research, Inc., "The Wolfram functions site," URL http://functions.wolfram.com.
  42. N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed. (Wiley Series in Probability and Statistics, 1994).
  43. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling," EURASIP Journal on Wireless Communications and Networking 2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.
    [CrossRef]
  44. J. C.  Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, Optics and Photonics Series, 2nd ed. (Academic Press, 2006).
  45. A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
    [CrossRef]
  46. Wolfram Research, Inc., Mathematica, version 7.0 ed. (Wolfram Research, Inc., Champaign, Illinois, 2008).
  47. A. Garcia-Zambrana, and A. Puerta-Notario, "Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems," IEE Proc., Optoelectron. 150(5), 439-444 (2003).
    [CrossRef]

2010 (4)

E. Bayaki, and R. Schober, "On space-time coding for free-space optical systems," IEEE Trans. Commun. 58(1), 58-62 (2010).
[CrossRef]

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
[CrossRef]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
[CrossRef] [PubMed]

2009 (8)

C. Abou-Rjeily, "Orthogonal Space-Time Block Codes for Binary Pulse Position Modulation," IEEE Trans. Commun. 57(3), 602-605 (2009).
[CrossRef]

F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, "Channel coding and time-diversity for optical wireless links," Opt. Express 17(2), 872-887 (2009).
[CrossRef] [PubMed]

W. Lim, C. Yun, and K. Kim, "BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels," Opt. Express 17(6), 4479-4484 (2009).
[CrossRef] [PubMed]

H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, ""Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels," IEEE/OSA," J. Lightwave Technol. 27(8), 974-979 (2009).
[CrossRef]

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

I. B. Djordjevic, and G. T. Djordjevic, "On the communication over strong atmospheric turbulence channels by adaptive modulation and coding," Opt. Express 17(20), 18,250-18,262 (2009).
[CrossRef]

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

2008 (2)

C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
[CrossRef]

I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. Neifeld, ""LDPC-Coded MIMO Optical Communication Over the Atmospheric Turbulence Channel," IEEE/OSA," J. Lightwave Technol. 26(5), 478-487 (2008).
[CrossRef]

2007 (4)

A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
[CrossRef]

A. García-Zambrana, "Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence," IEEE Commun. Lett. 11(5), 390-392 (2007).
[CrossRef]

I. B. Djordjevic, "LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation," Opt. Express 15(16), 10,026-10,032 (2007).
[CrossRef]

2006 (1)

M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
[CrossRef]

2005 (3)

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

M. Simon, and V. Vilnrotter, "Alamouti-Type space-time coding for free-space optical communication with direct detection," IEEE Trans. Wirel. Comm. 4(1), 35-39 (2005).
[CrossRef]

J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, "Shannon capacities and error-correction codes for optical atmospheric turbulent channels," J. Opt. Netw. 4(9), 586-601 (2005).
[CrossRef]

2003 (2)

A. Garcia-Zambrana, and A. Puerta-Notario, "Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems," IEE Proc., Optoelectron. 150(5), 439-444 (2003).
[CrossRef]

S. Hranilovic, and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Inf. Theory 49(6), 1385-1399 (2003).
[CrossRef]

2002 (1)

X. Zhu, and J. M. Kahn, "Free-Space Optical Communication through Atmospheric Turbulence Channels," IEEE Trans. Commun. 50(8), 1293-1300 (2002).
[CrossRef]

2001 (2)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "Large change rate-adaptive indoor wireless infrared links using variable silence periods," Electron. Lett. 37(8), 524-525 (2001).
[CrossRef]

1999 (1)

A. García-Zambrana, and A. Puerta-Notario, "RZ-Gaussian pulses reduce the receiver complexity in wireless infrared links at high bit rates," Electron. Lett. 35(13), 1059-1061 (1999).
[CrossRef]

1998 (1)

1997 (1)

J. M. Kahn, and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

1989 (1)

A. A. Ali, and I. A. Al-Kadi, "On the use of repetition coding with binary digital modulations on mobile channels," IEEE Trans. Vehicular Technol. 38(1), 14-18 (1989).
[CrossRef]

1975 (1)

R. L. Fante, "Electromagnetic Beam Propagation in Turbulent Media," Proc. IEEE 63(12), 1669-1692 (1975).
[CrossRef]

Abou-Rjeily, C.

C. Abou-Rjeily, "Orthogonal Space-Time Block Codes for Binary Pulse Position Modulation," IEEE Trans. Commun. 57(3), 602-605 (2009).
[CrossRef]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
[CrossRef]

Ali, A. A.

A. A. Ali, and I. A. Al-Kadi, "On the use of repetition coding with binary digital modulations on mobile channels," IEEE Trans. Vehicular Technol. 38(1), 14-18 (1989).
[CrossRef]

Al-Kadi, I. A.

A. A. Ali, and I. A. Al-Kadi, "On the use of repetition coding with binary digital modulations on mobile channels," IEEE Trans. Vehicular Technol. 38(1), 14-18 (1989).
[CrossRef]

Andrews, L. C.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
[CrossRef]

C. Y. Young, L. C. Andrews, and A. Ishimaru, "Time-of-Arrival Fluctuations of a Space-Time Gaussian Pulse in Weak Optical Turbulence: an Analytic Solution," Appl. Opt. 37(33), 7655-7660 (1998).
[CrossRef]

Anguita, J.

Barry, J. R.

J. M. Kahn, and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Bayaki, E.

E. Bayaki, and R. Schober, "On space-time coding for free-space optical systems," IEEE Trans. Commun. 58(1), 58-62 (2010).
[CrossRef]

Bourennane, S.

Brandt-Pearce, M.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

Cao, Q.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

Castillo-Vazquez, B.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

Castillo-Vazquez, C.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

Castillo-Vázquez, B.

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
[CrossRef] [PubMed]

A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
[CrossRef]

Castillo-Vázquez, C.

A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
[CrossRef]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
[CrossRef] [PubMed]

Castillo-Vázquez, M.

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

Caussé, P.

Cherry, P. C.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Denic, S.

Djordjevic, G. T.

I. B. Djordjevic, and G. T. Djordjevic, "On the communication over strong atmospheric turbulence channels by adaptive modulation and coding," Opt. Express 17(20), 18,250-18,262 (2009).
[CrossRef]

Djordjevic, I.

Djordjevic, I. B.

I. B. Djordjevic, and G. T. Djordjevic, "On the communication over strong atmospheric turbulence channels by adaptive modulation and coding," Opt. Express 17(20), 18,250-18,262 (2009).
[CrossRef]

I. B. Djordjevic, S. Denic, J. Anguita, B. Vasic, and M. Neifeld, ""LDPC-Coded MIMO Optical Communication Over the Atmospheric Turbulence Channel," IEEE/OSA," J. Lightwave Technol. 26(5), 478-487 (2008).
[CrossRef]

I. B. Djordjevic, "LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation," Opt. Express 15(16), 10,026-10,032 (2007).
[CrossRef]

Fafalios, M. E.

Fante, R. L.

R. L. Fante, "Electromagnetic Beam Propagation in Turbulent Media," Proc. IEEE 63(12), 1669-1692 (1975).
[CrossRef]

Foshee, J. J.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Garcia-Zambrana, A.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
[CrossRef]

A. Garcia-Zambrana, and A. Puerta-Notario, "Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems," IEE Proc., Optoelectron. 150(5), 439-444 (2003).
[CrossRef]

García-Zambrana, A.

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
[CrossRef] [PubMed]

A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
[CrossRef]

A. García-Zambrana, "Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence," IEEE Commun. Lett. 11(5), 390-392 (2007).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "Large change rate-adaptive indoor wireless infrared links using variable silence periods," Electron. Lett. 37(8), 524-525 (2001).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "RZ-Gaussian pulses reduce the receiver complexity in wireless infrared links at high bit rates," Electron. Lett. 35(13), 1059-1061 (1999).
[CrossRef]

Garrido-Balsells, J. M.

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

Hiniesta-Gomez, A.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

Hranilovic, S.

S. Hranilovic, and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Inf. Theory 49(6), 1385-1399 (2003).
[CrossRef]

Ishimaru, A.

Jurado-Navas, A.

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
[CrossRef]

Kahn, J. M.

X. Zhu, and J. M. Kahn, "Free-Space Optical Communication through Atmospheric Turbulence Channels," IEEE Trans. Commun. 50(8), 1293-1300 (2002).
[CrossRef]

J. M. Kahn, and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Karagianni, E. A.

Karagiannidis, G. K.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
[CrossRef]

Khalighi, A.

Kim, K.

Kolodzy, P. J.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Kschischang, F. R.

S. Hranilovic, and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Inf. Theory 49(6), 1385-1399 (2003).
[CrossRef]

Kwok, C. H.

C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
[CrossRef]

Leveque, I.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

Li, J.

M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
[CrossRef]

Lim, W.

McIntire, W. K.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
[CrossRef]

Neifeld, M.

Nistazakis, H. E.

Northcott, M.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Penty, R. V.

C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
[CrossRef]

Phillips, R. L.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
[CrossRef]

Pike, H. A.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Puerta-Notario, A.

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
[CrossRef]

A. Garcia-Zambrana, and A. Puerta-Notario, "Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems," IEE Proc., Optoelectron. 150(5), 439-444 (2003).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "Large change rate-adaptive indoor wireless infrared links using variable silence periods," Electron. Lett. 37(8), 524-525 (2001).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "RZ-Gaussian pulses reduce the receiver complexity in wireless infrared links at high bit rates," Electron. Lett. 35(13), 1059-1061 (1999).
[CrossRef]

Sandalidis, H. G.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

Schober, R.

E. Bayaki, and R. Schober, "On space-time coding for free-space optical systems," IEEE Trans. Commun. 58(1), 58-62 (2010).
[CrossRef]

Simon, M.

M. Simon, and V. Vilnrotter, "Alamouti-Type space-time coding for free-space optical communication with direct detection," IEEE Trans. Wirel. Comm. 4(1), 35-39 (2005).
[CrossRef]

Stadler, B.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Stotts, L. B.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Tombras, G. S.

Tsiftsis, T. A.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

Tsigopoulos, A. D.

Uysal, M.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
[CrossRef]

M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
[CrossRef]

Vasic, B.

Vilnrotter, V.

M. Simon, and V. Vilnrotter, "Alamouti-Type space-time coding for free-space optical communication with direct detection," IEEE Trans. Wirel. Comm. 4(1), 35-39 (2005).
[CrossRef]

White, I. H.

C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
[CrossRef]

Wilson, S. G.

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

Xu, F.

Young, C. Y.

Young, D. W.

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Yu, M.

M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
[CrossRef]

Yun, C.

Zhu, X.

X. Zhu, and J. M. Kahn, "Free-Space Optical Communication through Atmospheric Turbulence Channels," IEEE Trans. Commun. 50(8), 1293-1300 (2002).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

A. Jurado-Navas, A. Garcia-Zambrana, and A. Puerta-Notario, "Efficient lognormal channel model for turbulent FSO communications," Electron. Lett. 43(3), 178-179 (2007).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "Large change rate-adaptive indoor wireless infrared links using variable silence periods," Electron. Lett. 37(8), 524-525 (2001).
[CrossRef]

A. García-Zambrana, and A. Puerta-Notario, "RZ-Gaussian pulses reduce the receiver complexity in wireless infrared links at high bit rates," Electron. Lett. 35(13), 1059-1061 (1999).
[CrossRef]

IEE Proc., Optoelectron. (1)

A. Garcia-Zambrana, and A. Puerta-Notario, "Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems," IEE Proc., Optoelectron. 150(5), 439-444 (2003).
[CrossRef]

IEEE Commun. Lett. (1)

A. García-Zambrana, "Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence," IEEE Commun. Lett. 11(5), 390-392 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, "Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels," IEEE Photon. Technol. Lett. 21(14), 1017-1019 (2009).
[CrossRef]

C. H. Kwok, R. V. Penty, and I. H. White, "Link Reliability Improvement for Optical Wireless Communication Systems with Temporal-Domain Diversity Reception," IEEE Photon. Technol. Lett. 20(9), 700-702 (2008).
[CrossRef]

IEEE Trans. Commun. (4)

C. Abou-Rjeily, "Orthogonal Space-Time Block Codes for Binary Pulse Position Modulation," IEEE Trans. Commun. 57(3), 602-605 (2009).
[CrossRef]

E. Bayaki, and R. Schober, "On space-time coding for free-space optical systems," IEEE Trans. Commun. 58(1), 58-62 (2010).
[CrossRef]

S. G. Wilson, M. Brandt-Pearce, Q. Cao, and I. Leveque, "J. H., "Free-Space Optical MIMO Transmission With Q-ary PPM," IEEE Trans. Commun. 53(8), 1402-1412 (2005).
[CrossRef]

X. Zhu, and J. M. Kahn, "Free-Space Optical Communication through Atmospheric Turbulence Channels," IEEE Trans. Commun. 50(8), 1293-1300 (2002).
[CrossRef]

IEEE Trans. Inf. Theory (1)

S. Hranilovic, and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Inf. Theory 49(6), 1385-1399 (2003).
[CrossRef]

IEEE Trans. Vehicular Technol. (1)

A. A. Ali, and I. A. Al-Kadi, "On the use of repetition coding with binary digital modulations on mobile channels," IEEE Trans. Vehicular Technol. 38(1), 14-18 (1989).
[CrossRef]

IEEE Trans. Wirel. Comm. (4)

M. Uysal, J. Li, and M. Yu, "Error rate performance analysis of coded free-space optical links over gamma gamma atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 5(6), 1229-1233 (2006).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER Performance of Free-Space Optical Transmission with Spatial Diversity," IEEE Trans. Wirel. Comm. 6(8), 2813-2819 (2007).
[CrossRef]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, "Optical wireless links with spatial diversity over strong atmospheric turbulence channels," IEEE Trans. Wirel. Comm. 8(2), 951-957 (2009).
[CrossRef]

M. Simon, and V. Vilnrotter, "Alamouti-Type space-time coding for free-space optical communication with direct detection," IEEE Trans. Wirel. Comm. 4(1), 35-39 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 8 (2001).
[CrossRef]

Opt. Express (7)

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels," Opt. Express 18(6), 5356-5366 (2010).
[CrossRef] [PubMed]

I. B. Djordjevic, and G. T. Djordjevic, "On the communication over strong atmospheric turbulence channels by adaptive modulation and coding," Opt. Express 17(20), 18,250-18,262 (2009).
[CrossRef]

I. B. Djordjevic, "LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation," Opt. Express 15(16), 10,026-10,032 (2007).
[CrossRef]

W. Lim, C. Yun, and K. Kim, "BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels," Opt. Express 17(6), 4479-4484 (2009).
[CrossRef] [PubMed]

F. Xu, A. Khalighi, P. Caussé, and S. Bourennane, "Channel coding and time-diversity for optical wireless links," Opt. Express 17(2), 872-887 (2009).
[CrossRef] [PubMed]

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, "An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications," Opt. Express 18(16), 17,346-17,363 (2010).
[CrossRef]

A. García-Zambrana, B. Castillo-Vázquez, and C. Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18(19), 20,445-20,454 (2010).
[CrossRef]

Proc. IEEE (3)

R. L. Fante, "Electromagnetic Beam Propagation in Turbulent Media," Proc. IEEE 63(12), 1669-1692 (1975).
[CrossRef]

J. M. Kahn, and J. R. Barry, "Wireless Infrared Communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

L. B. Stotts, L. C. Andrews, P. C. Cherry, J. J. Foshee, P. J. Kolodzy, W. K. McIntire, M. Northcott, R. L. Phillips, H. A. Pike, B. Stadler, and D. W. Young, "Hybrid Optical RF Airborne Communications," Proc. IEEE 97(6), 1109-1127 (2009).
[CrossRef]

Other (15)

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
[CrossRef]

I. B. Djordjevic, "Adaptive Modulation and Coding for Free-Space Optical Channels," IEEE/OSA Journal of Optical Communications and Networking 2(5), 221-229 (2010).
[CrossRef]

N. D. Chatzidiamantis, A. S. Lioumpas, G. K. Karagiannidis, and S. Arnon, "Optical Wireless Communications with Adaptive Subcarrier PSK Intensity Modulation," (2010). Accepted for publication in IEEE Global Telecommunications Conference (GLOBECOM ’10), URL http://users.auth.gr/nestoras.

J. Li, and M. Uysal, "Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection," in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654-2658 (2003).

S. Trisno, I. I. Smolyaninov, S. D. Milner, and C. C. Davis, "Delayed diversity for fade resistance in optical wireless communication system through simulated turbulence," in Proc. SPIE, pp. 385-394 (2004).
[CrossRef]

S. Trisno, I. I. Smolyaninov, S. D. Milner, and C. C. Davis, "Characterization of delayed diversity optical wireless system to mitigate atmospheric turbulence induced fading," in Proc. SPIE, pp. 589,215.1-589,215.10 (2005).

M. K. Simon, and M.-S. Alouini, Digital Communications over Fading Channels, 2nd ed. (Wiley-IEEE Press, New Jersey, 2005).

I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).

N. D. Chatzidiamantis, G. K. Karagiannidis, and D. S. Michalopoulos, "On the Distribution of the Sum of Gamma-Gamma Variates and Application in MIMO Optical Wireless Systems," in Proc. IEEE Global Telecommunications Conf. GLOBECOM 2009, pp. 1-6 (2009).
[CrossRef]

V. S. Adamchik, and O. I. Marichev, "The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system," in Proc. Int. Conf. on Symbolic and Algebraic Computation, pp. 212-224 (Tokyo, Japan, 1990).

Wolfram Research, Inc., "The Wolfram functions site," URL http://functions.wolfram.com.

N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed. (Wiley Series in Probability and Statistics, 1994).

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, "On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling," EURASIP Journal on Wireless Communications and Networking 2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.
[CrossRef]

J. C.  Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, Optics and Photonics Series, 2nd ed. (Academic Press, 2006).

Wolfram Research, Inc., Mathematica, version 7.0 ed. (Wolfram Research, Inc., Champaign, Illinois, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Performance comparison of different rate-adaptive transmission schemes in FSO IM/DD links over the gamma-gamma atmospheric turbulence channel when different levels of turbulence (a) (α,β) = (4, 3) and (b) (α,β) = (4, 1) are assumed, corresponding to values of scintillation index of SI = 0.66 and SI = 1.5, respectively.

Fig. 2
Fig. 2

Performance comparison of different rate-adaptive transmission schemes in FSO IM/DD links over the exponential atmospheric turbulence channel, corresponding to a value of scintillation index of SI = 1.

Fig. 3
Fig. 3

(a) Performance of the sech2 pulse shape with κ = 0.25 for the rate-adaptive scheme (Rep&Sil) with TDO = 2 and RR = {1, 2, 4, 8} in FSO IM/DD links over the exponential atmospheric turbulence channel; (b) Performance of the rate-adaptive scheme (Rep&Sil) here proposed with TDO = 2, rectangular pulse shape with κ = 1 and RR = {1, 2, 4, 8} in FSO IM/DD links over the gamma-gamma atmospheric turbulence channel with analytical results in Eq. (20) when different levels of turbulence are assumed, together with the analytical results in Eq. (24), corresponding to the negative exponential distributed turbulence model.

Fig. 4
Fig. 4

Achievable information rate corresponding to the rate-adaptive transmission schemes Sil, Rep and Rep&Sil for two different target BER requirements, (a) Pb = 10−4 and (b) Pb = 10−8, and time-diversity orders of TDO={2, 4}, together with the ergodic capacity for the exponential atmospheric turbulent optical channel.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = η i ( t ) x ( t ) + z ( t )
f I ( i ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) μ ( α + β ) ) / 2 i ( ( α + β ) / 2 ) 1 K α β ( 2 α β i μ ) , i 0
α = [ exp ( 0.49 χ 2 ( 1 + 0.18 d 2 + 0.56 χ 12 / 5 ) 7 / 6 ) 1 ] 1
β = [ exp ( 0.51 χ 2 ( 1 + 0.69 χ 12 / 5 ) 5 / 6 ( 1 + 0.9 d 2 + 0.62 d 2 χ 12 / 5 ) 7 / 6 ) 1 ] 1
SI = E [ I 2 ] ( E [ I ] ) 2 1 = 1 α + 1 β + 1 α β .
f I ( i ) = exp ( i ) , i 0
x ( t ) = k = a k 2 T b P G ( f = 0 ) g ( t k T b )
x R R s ( t ) = k = a k R R s 2 T b P G ( f = 0 ) g ( t kR R s T b )
x R R rc ( t ) = k = a k 2 T b P G ( f = 0 ) l = 0 R R rc 1 g ( t l T b kR R rc T b )
x R R rcs ( t ) = k = a k R R s 2 T b P G ( f = 0 ) l = 0 R R rc 1 g ( t lR R s T b kRR T b )
P b s ( E | I ) = Q ( R R s 2 d 2 i 2 / 2 N 0 )
P b s ( E ) = 0 Q ( 2 γ ξ Ω c s i ) f I ( i ) d i .
P b r c ( E | { I k } k = 1 R R r c ) = Q ( d 2 2 R R r c N 0 k = 1 R R r c i k ) = Q ( 2 γ ξ R R r c k = 1 R R r c i k ) .
P b rc ( E | { I k } k = 1 TDO ) = Q ( 2 γ ξ R R r c R R r c TDO k = 1 TDO i k ) .
P b r c ( E | { I k } k = 1 Ω d r c ) = Q ( 2 γ ξ Ω c r c k = 1 Ω d r c i k )
P b r c ( E ) = 0 0 0 Ω d r c - fold Q ( 2 γ ξ Ω c r c k = 1 Ω d r c i k ) k = 1 Ω d r c f I k ( i k ) d i 1 d i 2 d i Ω d r c .
P b rcs ( E | { I k } k = 1 Ω d rcs ) = Q ( 2 γ ξ Ω c rcs k = 1 Ω d rcs i k )
P b r c s ( E ) = 0 0 0 Ω d rcs - fold Q ( 2 γ ξ Ω c r c s k = 1 Ω d r c s i k ) k = 1 Ω d r c s f I k ( i k ) d i 1 d i 2 d i Ω d rcs .
P b ( E ) = 0 Q ( 2 γ ξ Ω c i ) f I T ( i ) d i
P b ( E ) = ( α T β T ) α T + β T 2 Ω d α T + β T 2 ( Ω c 2 γ ξ ) α T + β T 4 8 π 3 / 2 Γ ( α T ) Γ ( β T ) × G 2 , 5 4 , 2 ( α T 2 β T 2 16 Ω c 2 Ω d 2 γ ξ | α T β T + 2 4 , α T β T + 4 4 α T β T 4 , α T β T + 2 4 , β T α T 4 , α T + β T + 2 4 , α T + β T 4 ) .
P b ( E ) ( ( Γ ( ( Ω d β + 1 ) α β + 1 Ω d β ) Ω d β Γ ( Ω d β 2 ) Γ ( ( Ω d β + 1 ) α β + 1 ) ) 1 / ( Ω d β ) 2 ( β + 1 ) Ω c α β ( Ω d β + 1 ) γ ξ ) Ω d β .
A [ d B ] G c rcs [ d B ] G c r c [ d B ] = 10 log 10 ( Ω c r c s / Ω c r c ) = 5 log 10 ( R R / TDO )
f I T ( i ) = i Ω d 1 Γ ( Ω d ) exp ( i ) , i 0 .
P b ( E ) = 2 Ω d 3 Ω c Ω d 1 ( γ ξ ) Ω d 2 1 2 × ( 4 Ω c Γ ( Ω d + 2 2 ) γ ξ 2 F 2 ( Ω d + 1 2 , Ω d 2 ; 1 2 , Ω d + 2 2 ; 1 4 Ω c 2 γ ξ ) 2 Ω d Γ ( Ω d + 3 2 ) 2 F 2 ( Ω d + 1 2 , Ω d + 2 2 ; 3 2 , Ω d + 3 2 ; 1 4 Ω c 2 γ ξ ) )
P b ( E ) ( ( Ω d Γ ( Ω d 2 ) ) 1 / Ω d 2 Ω c γ ξ ) Ω d .
R Sil ( γ ) = 2 π P b γ ξ
R Rep ( γ ) = { ( TDO P b 2 TDO Γ ( TDO / 2 ) ( γ ξ ) TDO / 2 ) 2 / TDO , if R R TDO ; TDO 2 ( TDO P b 2 TDO Γ ( TDO / 2 ) ( γ ξ ) TDO / 2 ) 2 / TDO , if R R > TDO ;
R Rep & Sil ( γ ) = { ( TDO P b 2 TDO Γ ( TDO / 2 ) ( γ ξ ) TDO / 2 ) 2 / TDO , if R R TDO ; TDO 3 / 2 ( TDO P b 2 TDO Γ ( TDO / 2 ) ( γ ξ ) TDO / 2 ) 1 / TDO , if R R > TDO ;
Y = AXI + Z , X { 0 , 1 } , Z N ( 0 , 1 )
I ( X ; Y | i ) = x = 0 1 P X ( x ) f Y ( y | x , i ) log 2 ( f Y ( y | x , i ) Σ r = 0 , 1 P X ( r ) f Y ( y | x = r , i ) d y
C ( γ ) = 0 I ( X ; Y | i ) f I ( i ) d i .

Metrics