Abstract

We show the annealing effect on silver and Erbium- doped tellurite glasses in the formation of nanoparticles (NPs) of silver, produced by the reduction of silver (Ag+→Ag0), aiming to an fluorescence enhancement. The absorption spectra show typical Localized Surface Plasmon Resonance (LSPR) band of Ag0 NP in addition to the distinctive absorption peaks of Er3+ ions. Both observations demonstrate that the photoluminescence enhancement is due to the coupling of dipoles formed by NPs with the Er3+ 4I13/24I15/2 transition. This plasmon energy transfer to the Er3+ ions was observed in the fluorescence spectrum with a blue-shift of the peaks.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, New York, 2004).
  2. C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
    [CrossRef] [PubMed]
  3. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
    [CrossRef]
  4. T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
    [CrossRef]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  7. O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
    [CrossRef]
  8. V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
    [CrossRef]
  9. V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
    [CrossRef]
  10. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [CrossRef] [PubMed]
  11. T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
    [CrossRef] [PubMed]
  12. Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
    [CrossRef]
  13. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  14. F. Vallé, In Nanoscience: Nanomaterials and Nanochemistry, C. Dupas and M. Lahmani, Eds.; (Springer, Berlin, 2008), 197 pages.
  15. D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
    [CrossRef]
  16. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
    [CrossRef] [PubMed]
  17. C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
    [CrossRef]
  18. F. Hache, D. Ricard, and C. J. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]
  19. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [CrossRef]
  20. JCPDS Card File No. 4–0783.
  21. G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  22. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
    [CrossRef]

2009 (2)

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

2006 (3)

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

2004 (1)

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

2001 (2)

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

2000 (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

1996 (1)

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

1962 (2)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Aegerter, M. A.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Auzel, F.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Baida, H.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Barbosa, L. C.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Billaud, P.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Broyer, M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Catunda, T.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Cesar, C. L.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Chillcce, E. F.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Christofilos, D.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Chumanov, G.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Cottancin, E.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Crut, A.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

de Sá, G. F.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Del Fatti, N.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Evanoff, D. D.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Florez, A.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Flytzanis, C. J.

Hache, F.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Hanada, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Huang, Y. D.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Karmakar, B.

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Lermé, J.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Li, C.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Lin, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Maioli, P.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Malta, O. L.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Marhaba, S.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Mertens, H.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Messaddeq, Y.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Mortier, M.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Nunes, L. A. O.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Pellarin, M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Quan, Z.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Ricard, D.

Rivera, V. A. G.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Rodriguez, E.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sánchez-Iglesias, A.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Santa-Cruz, P. O.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Soga, N.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Som, T.

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

Tanabe, S.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Valleé, F. J.

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Vallée, F.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Voisin, C.

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

White, R. L.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Yang, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Yang, P.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Chem. Mater. (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Inorg. Chem. (1)

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Lumin. (1)

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

J. Non-Cryst. Solids (2)

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Nano Lett. (1)

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Opt. Mater. (1)

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Phys. Chem. B (1)

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Other (3)

F. Vallé, In Nanoscience: Nanomaterials and Nanochemistry, C. Dupas and M. Lahmani, Eds.; (Springer, Berlin, 2008), 197 pages.

P. N. Prasad, Nanophotonics (Wiley, New York, 2004).

JCPDS Card File No. 4–0783.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorption spectra of some samples. The two figures inserted show the observation of LSPR to different glasses. In this sense, the absorption band related to LSPR is not observed because the amount of the NPs is not enough to originate a strong peak. (b) In this picture observed the Ag λp from the absorption spectra of glasses without Er3+ ions in to different annealing time, besides the glass doped with Er3+ ions without Ag NPs. Into figure the inset is show a zoom the spectrum from the glass with 0.25% Ag doped.

Fig. 2
Fig. 2

(a) Photoluminescence of the TE025-Y samples pumped with diode laser at 980 nm, showing photoluminescence enhancement. The inserted figure shows a zoom of the peaks. The vertical dashed line is a reference for showing the blue-shift of the peaks, and the arrow indicates the enhancement due to transfer energy from EDs to Er3+. (b) Same for the samples TE050-Y. The enhancement of luminescence was found to be reproducible for all ours samples.

Fig. 3
Fig. 3

Energy diagram of the Er3+ showing the splitting of levels due to electron-electron (Coulomb) interaction take place the 4I terms, spin-orbit interaction yielding the manifolds J = 15/2, 13/2, 11/2 and 9/2 and the Stark levels induced by crystal field of tetrahedral symmetry. Also is indicated the process of radiative and non-radiative energy transfer from the pump to ED, and from the pump to Er3+. ET: energy transfer, R: radiative, NR: non-radiative.

Fig. 4
Fig. 4

Calculated NPs’ diameter (d) of the NPs versus annealing time to samples both TE025-Y and TE050-Y samples. The inserted figures are a schematic representation of one ED, showing it size d and separation distance rm . (b) The 600 × 600 nm2 TEM photograph of the Ag NPs (TE025-10.0) show closely dispersed particles, the majority of which are ellipse shape. The maximum length (major axis) of the NPs varies from 19 to 23 nm and aspect ratio 1.0–1.2. (c) Histogram of Ag NPs size from picture (b).

Fig. 5
Fig. 5

Lifetime of the 4I13/2 level for all samples, as compared with the lifetime of the sample without NP (dashed line). The bars indicate errors of ± 2%. (b) Absorption spectra show the increasing absorption due to the presence of silver NPs.

Tables (2)

Tables Icon

Table 1 Some calculated physical properties and relative intensities of the luminescence enhancement of the samples. Besides as well glass transition temperatures Tg

Tables Icon

Table 2 Positions of the Er3+ Stark levels taken from absorption and luminescence spectra at ambient temperature (cm−1). The shown values are the average for each concentration of Ag with the different annealing times

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P s t r e n g t h = χ [ 8 π 2 m υ 3 h ( 2 J + 1 ) ] ( | i | D q ( 1 ) n e a r e s t n e i g h b o r | f | 2 + | i | D q ' ( 1 ) A g N P | f | 2 )
i | = φ i | + β φ i | V c r y s | φ β / ( E i E β ) φ β | ,
| f = | φ f + β φ β | V c r y s | φ f / ( E f E β ) | φ β ,
i | P + P N P | f = β { φ i | V c r y s | φ β φ β | P | φ f / ( E i E β ) + φ i | P | φ β φ β | V c r y s | φ f / ( E f E β ) + φ i | V c r y s | φ β φ β | P N P | φ f / ( E i E β ) + φ i | P N P | φ β φ β | V c r y s | φ f / ( E f E β ) } .

Metrics