Abstract

We studied the surface plasmon resonance properties of transverse electric (TE) wave in a μ-negative (MNG) material/dielectric /μ-negative (MNG) material waveguide with a finite length which works as a subwavelength cavity. The wavelength of the surface plasmon becomes shorter when decrease the thickness of the dielectric core and decrease the plasma frequency of MNG material. The resonance in this cavity can be understood as a Fabry-Perot resonance caused by the reflection of the TE guided mode at the entrance and the exit surfaces. The electromagnetic fields and power flow are concentrated around the dielectric core at the resonant frequency, the magnetic field is maximized at the dielectric core entrance and exit. When a subwavelength magnetic resonator is put at the core entrance and the resonance frequency is tuned to the plasmon cavity mode, Rabi splitting and Rabi oscillation can appear because of the strong coupling between this resonator and the cavity mode.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
    [CrossRef] [PubMed]
  2. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
    [CrossRef] [PubMed]
  3. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
    [CrossRef] [PubMed]
  4. K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
    [CrossRef] [PubMed]
  5. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
    [CrossRef]
  6. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
    [CrossRef]
  7. L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
    [CrossRef] [PubMed]
  8. J. P. Xu, L. G. Wang, and Q. Lin, “Normal mode splitting of transmission spectrum for Fabry–Pérot cavity containing metamaterials,” J. Opt. Soc. Am. B 26(12), 50–54 (2009).
    [CrossRef]
  9. E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
    [CrossRef]
  10. J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
    [CrossRef] [PubMed]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  14. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  15. S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
    [CrossRef] [PubMed]
  16. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
    [CrossRef]
  17. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
    [CrossRef]
  18. C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley & Sons, New York, 2006).
  19. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
    [CrossRef]
  20. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
    [CrossRef]
  21. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]
  22. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
    [CrossRef]
  23. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [CrossRef]
  24. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
    [CrossRef]
  25. K. Park, B. J. Lee, C. J. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
    [CrossRef]
  26. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983).
    [CrossRef] [PubMed]
  27. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
    [CrossRef] [PubMed]
  28. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [CrossRef]
  29. M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
    [CrossRef]

2009 (3)

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

J. P. Xu, L. G. Wang, and Q. Lin, “Normal mode splitting of transmission spectrum for Fabry–Pérot cavity containing metamaterials,” J. Opt. Soc. Am. B 26(12), 50–54 (2009).
[CrossRef]

2008 (3)

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

2007 (3)

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

2006 (4)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

2005 (4)

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[CrossRef] [PubMed]

K. Park, B. J. Lee, C. J. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[CrossRef]

2004 (1)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

2003 (4)

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

2001 (2)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

1999 (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1990 (1)

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

1983 (1)

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

Andrews, A. M.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Carmichael, H. J.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Chan, C. T.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Chen, H.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Cheng, Q.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Chiao, R. Y.

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Christodoulides, D. N.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Colombelli, R.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Dionne, J. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Dupont, E.

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Eleftheriades, G. V.

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

Extavour, M.

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Fan, S. H.

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[CrossRef] [PubMed]

Fan, W. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Frauenglass, A.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Fu, C. J.

Gauthier, D. J.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

He, L.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Huang, R.-S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Jahnke, F.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Kip, D.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Klang, P.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Lai, W.

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Lee, B. J.

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Li, H.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

Li, H. Q.

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Li, T.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Lin, Q.

Lin, X. Q.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Liu, H.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Liu, H. C.

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Liu, R. P.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Lu, D. Y.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Makris, K. G.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

Maradudin, A. A.

Minhas, B. K.

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Mojahedi, M.

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

Morin, S. E.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Mossberg, T. W.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

Park, K.

Peleg, O.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Rüter, C. E.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Sagnes, I.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Segev, M.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Shandarova, K.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[CrossRef] [PubMed]

Sheng, P.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Sirtori, C.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Spring-Thorpe, A. J.

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Stegeman, G. I.

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Strasser, G.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Todorov, Y.

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Wallis, R. F.

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

Wang, F. M.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Wang, L. G.

Wang, S. M.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Wen, W. J.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Woodley, J.

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

Wu, Q. L.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Xu, J. P.

Yang, Y. P.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, L. W.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

Zhang, X.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, Y. W.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

Zhang, Z. M.

Zhao, B.

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

Zhou, L.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Zhu, S. N.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

Zhu, S. Y.

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

Zhu, Y. F.

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[CrossRef]

J. Appl. Phys. (1)

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001).
[CrossRef]

Nano Lett. (1)

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Nature (2)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (5)

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008).
[CrossRef]

R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007).
[CrossRef]

E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006).
[CrossRef]

L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (9)

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[CrossRef] [PubMed]

J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Other (1)

C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley & Sons, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Dependence of effective refractive index (n eff ) of MDM on the frequency of incident EM wave and the dielectric core thickness d. Scheme of the resonant cavity based on the MDM with finite length L is illustrated in the inset. (b) Dispersion relations of the MDM with different magnetic plasma frequency f p of MNG material.

Fig. 2
Fig. 2

The calculated transmittance of the resonant cavity realized by using the finite length MDM with different dielectric core thickness, d = 0.5mm, 1mm, 2mm and 4mm respectively.

Fig. 3
Fig. 3

The calculated transmittance of the resonant cavity based on the finite length MDM with different magnetic plasma frequency of MNG material, fp = 8GHz, 10GHz and 12GHz respectively, where d = 1mm, L = 15mm.

Fig. 4
Fig. 4

Power flow distribution in a MDM cavity at resonant frequency(upper site), where a TEM plane wave of 2.33GHz is incident from the left end, d = 1mm and L = 15 mm. Lower plots show the z-component of electric field Ez (black solid line) and y-component of magnetic field Hy (red dashed line) at y = 0 plane respectively. The magnetic field shows the maximum amplitudes near both end faces, and the electric field exhibits a peak at the center, a typical standing wave of the first order resonance, i.e. m = 1.

Fig. 5
Fig. 5

(a) Transmission of the plasmon cavity with an Lorenz resonant magnetic resonator located at the center of x = 0.5mm plane, where the resonator size is 0.1mm × 1mm × 3mm in x-y-z direction, the resonant frequency is tuned to the cavity mode. The caculated data are offset by −10dB, where f m, f L and f H represent the magnetic resonance frequency of the resonator, the lower and upper peak frequencies of the splitting modes, respectively. (b) shows the splitting mode peaks of the coupled resonator-cavity system plotted as function of f m, which is clear anticrossing behavior in Rabi splitting.

Fig. 6
Fig. 6

(a) The incident Gauss pulse and (b) the temporal evolution of the transmitted pulse, the intensity is normalized, the obvious oscillations appear in the transmitted pulse, meanwhile its amplitude exponentially decays with time due to the loss and radiation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tanh ( k d d / 2 ) = μ d k m μ m k d ( plasmon symmetric mode ) ,
coth ( k d d / 2 ) = μ d k m μ m k d ( plasmon anti symmetric mode ) ,

Metrics