Abstract

The nonlinear optical properties of thin ZnO film are studied using interferometric autocorrelation (IFRAC) microscopy. Ultrafast, below-bandgap excitation with 6-fs laser pulses at 800 nm focused to a spot size of 1 µm results in two emission bands in the blue and blue-green spectral region with distinctly different coherence properties. We show that an analysis of the wavelength-dependence of the interference fringes in the IFRAC signal allows for an unambiguous assignment of these bands as coherent second harmonic emission and incoherent, multiphoton-induced photoluminescence, respectively. More generally our analysis shows that IFRAC allows for a complete characterization of the coherence properties of the nonlinear optical emission from nanostructures in a single-beam experiment. Since this technique combines a very high temporal and spatial resolution we anticipate broad applications in nonlinear nano-optics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
    [CrossRef]
  2. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
    [CrossRef]
  3. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [CrossRef] [PubMed]
  4. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [CrossRef]
  5. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
    [CrossRef]
  6. C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
    [CrossRef]
  7. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
    [CrossRef] [PubMed]
  8. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
    [CrossRef]
  9. D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
    [CrossRef]
  10. N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
    [CrossRef]
  11. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
    [CrossRef]
  12. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
    [CrossRef]
  13. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
    [CrossRef]
  14. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
    [CrossRef]
  15. Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
    [CrossRef]
  16. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
    [CrossRef]
  17. H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
    [CrossRef] [PubMed]
  18. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
    [CrossRef]
  19. M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
    [CrossRef]
  20. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
    [CrossRef] [PubMed]
  21. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
    [CrossRef]
  22. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
    [CrossRef]
  23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
    [CrossRef] [PubMed]
  24. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

2010 (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

2008 (3)

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[CrossRef]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

2007 (1)

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

2006 (4)

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

2005 (3)

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[CrossRef] [PubMed]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

2004 (2)

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

2003 (2)

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[CrossRef]

2000 (1)

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

1997 (2)

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

1995 (1)

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Bar-Joseph, I.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[CrossRef]

Bock, M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Bogani, F.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[CrossRef]

Ceccherini, S.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

Ceder, G.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

Chan, W. K.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Che, C. M.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

Cheah, K. W.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Cheng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Choy, W. C. H.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Colocci, M.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

Comaschi, C.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Coquillat, D.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Dai, D. C.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

Damen, T. C.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

Das, S. K.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Deng, H.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Deveaud, B.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Djurisic, A. B.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

Djurišic, A. B.

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Dong, Z. W.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Fei?Lui, H.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Fisker, C.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[CrossRef]

Griebner, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Grunwald, R.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Gundu Rao, T. K.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Gurioli, M.

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

Haacke, S.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

Han, N. S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

Hsu, Y. F.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Kärtner, F. X.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Kohan, A. F.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

Kwong, C. Y.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Le Vassor d’Yerville, M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Lee, H. W.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Lee, K. M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Lee, S.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Leung, Y. H.

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Lienau, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Liu, K. J.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

Liu, S. W.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

Malvezzi, A. M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Min Park, S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

Morgan, D.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

Morgner, U.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Morkoç, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Mücke, O. D.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Neumann, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[CrossRef]

O’Neill, C.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Pedersen, K.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[CrossRef]

Pedersen, T. G.

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[CrossRef]

Pfeiffer, L. N.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

Qian, S. X.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

Qiana, S. X.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Ricca, A.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

Ropers, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Rotermund, F.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

Roy, V. A. L.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Seeber, W.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Shah, J.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

Shi, S. J.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

Shim, H. S.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

Song, J. K.

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[CrossRef] [PubMed]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Stibenz, G.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 .
[CrossRef] [PubMed]

Surya, C.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

Taylor, R. A.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Tian, R.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

Torres, J.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Tritschler, T.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Van de Walle, C. G.

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

Vecchi, G.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

Walmsley, I. A.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Wang, H. L.

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

Wang, J. C.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Warmuth, C.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Wegener, M.

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Wong, K. S.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

Wyatt, A. S.

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Xiao, M.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

Xie, M. H.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

Xu, S. J.

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Yan, Y. L.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

You, G. J.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Zhang, C. F.

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Zhong, Y. C.

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

Zhou, H. J.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

Zhu, R. Y.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Zimmermann, R.

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

Adv. Funct. Mater. (1)

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein).
[CrossRef]

App, Phys. Lett. (1)

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006).
[CrossRef]

Appl. Phys. B (2)

Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009).
[CrossRef]

G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005).
[CrossRef]

C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007).
[CrossRef]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004).
[CrossRef]

Bull. Korean Chem. Soc. (1)

N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006).
[CrossRef]

J. Appl. Phys. (1)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[CrossRef]

Nano Lett. (1)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Nature Photon. (1)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003).
[CrossRef]

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008).
[CrossRef]

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995).
[CrossRef] [PubMed]

S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997).
[CrossRef]

M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997).
[CrossRef]

T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008).
[CrossRef]

Small (1)

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Other (1)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for interferometric frequency resolved autocorrelation (IFRAC) microscopy. A phase-locked pair of two 6-fs-optical pulses centered at 800 nm derived from a mode-locked Ti:Sapphire oscillator operating at 80 MHz repetition rate is generated in a dispersion-balanced Michelson interferometer. Pulses with an energy of 1 nJ are focused to the diffraction limit of about 1 µm onto the sample using an all-reflective Cassegrain objective. The emission from the sample is collected in a reflection geometry, spectrally dispersed in a monochromator and detected with a cooled CCD detector as a function of the time delay τ between both pulses. (b) Spatial intensity profile in the focal plane recorded by scanning a near-field fiber tip through the focus. (c) Interferometric autocorrelation (IAC) trace of the focused laser pulses (solid line). A simulation of the IAC trace based on the measured laser spectrum (inset) is shown as a dashed line.

Fig. 2
Fig. 2

Room-temperature photoluminescence spectrum of the ZnO layer for one-photon, above-bandgap excitation at 337 nm. The spectrally narrow free-exciton emission around 392 nm and the defect-related blue-green emission band extending from 400 to 550 nm are clearly distinguished. Inset: Scanning electron microscope image of the sputtered 400-nm-thick ZnO film.

Fig. 3
Fig. 3

(a) Spectrally resolved nonlinear optical emission from a ZnO film. The sample is excited with 6-fs laser pulses pulses centered at 800 nm. The emission spectra are recorded as a function of the average laser power. Two emission bands, a blue emission around 400 nm and a blue-green emission around 500 nm are discerned. (b) Power dependence of the blue band, integrated between 360 and 460 nm (red circles) and allometric fit I P b 1 with b 1 = 1.85 ± 0.1 (black solid line). (c) Power dependence of the blue-green band, integrated between 470 and 520 nm (red circles) and allometric fit I P b 2 with b 2 = 3.5 ± 0.3 (black solid line).

Fig. 4
Fig. 4

(a) Experimental IFRAC traces from a 400-nm-thick ZnO layer plotted on a logarithmic scale. Two distinct emission-bands, the blue emission around 400 nm and a blue-green emission around 500 nm are discerned. Detection-wavelength dependent interference fringes with a period T = 2 λ d / c , λ d : detection wavelength, c: speed of light, are observed in the wavelength range between 380 nm and 450 nm. This points to a coherent optical harmonic emission process. In the range between 460 nm and 520 nm, however, the interference fringes are independent of the detection-wavelength and modulation period of T = 2.4 fs, indicating that the emission arises from an incoherent multiphoton-induced PL process. The different shape of the coherent and the incoherent emission is illustrated by dotted lines. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale (c,d) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm and from 460nm to 520nm, respectively.

Fig. 5
Fig. 5

Schematic illustration of a four-level system with displaying both harmonic emission and multi-photon-induced photoluminescence. We assume that the electronic system is excited by an ultrafast laser pulse with electric field E(t) coupling the ground state | 0 to an excited state | 1 by two-photon absorption and to an excited state | 2 by three-photon absorption. Second harmonic radiation is emitted from | 1 whereas carriers in | 2 are assumed to relax non-radiatively at rate k r to a state | 3 from which they return to the ground state by PL emission.

Fig. 6
Fig. 6

(a) Simulation of an IFRAC trace for the model system illustrated in Fig. 5 after excitation with a 6-fs-laser pulse plotted on a logarithmic scale. In agreement with the experimental data in Fig. 4(a), the simulation shows emission-wavelength-dependent interference fringes in the region around 440 nm, reflecting coherent second harmonic emission. The wavelength-independent fringes around 500 nm reflect incoherent three-photon-induced photoluminescence. (b) Spectral Fourier transformations of the IFRAC traces plotted on logarithmic intensity scale. (c) IAC trace obtained by spectrally integrating the data in (a) from 380nm to 460nm. (d) IAC trace obtained by integrating the data in (a) from 460nm to 520nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ 01 = ρ ˙ 10 ¯ = i Ω r 1 ( ρ 11 ρ 00 ) i ( ω 1 ω 0 ) ρ 01 1 T 2 1 ρ 01
ρ ˙ 02 = ρ ˙ 10 ¯ = i Ω r 2 ( ρ 22 ρ 00 ) i ( ω 2 ω 0 ) ρ 02 ( 1 T 2 2 + k r 2 ) ρ 02
ρ ˙ 00 = 2 Ω r 1 Im ( ρ 01 ) 2 Ω r 2 Im ( ρ 02 ) + k e m ρ 33
ρ ˙ 11 = 2 Ω r 1 Im ( ρ 01 )
ρ ˙ 22 = 2 Ω r 2 Im ( ρ 02 ) k r ρ 22
ρ ˙ 33 = k r ρ 22 k e m ρ 33

Metrics