Abstract

We present a new blue-sensitized photopolymer to achieve a higher storage density compared to green/red-recordable media. Photopolymers are prepared based on a two-chemistry system and their holographic recording properties are investigated. A matrix of long and flexible ether units of an epoxy precursor and a multi-crosslinkable amine hardener enhances energetic sensitivity and suppresses volume shrinkage effectively. Page-wise recording of 961 bits/page of digital data is demonstrated and long term recording stability is also verified for a period of roughly 2 months.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
    [CrossRef]
  2. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36(19), 4339–4348 (1997).
    [CrossRef] [PubMed]
  3. M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
    [CrossRef]
  4. B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [CrossRef] [PubMed]
  6. L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
    [CrossRef]
  7. J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
  8. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  9. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
    [CrossRef]
  10. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39(14), 2353–2358 (2000).
    [CrossRef]
  11. L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999).
    [CrossRef]
  12. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef]
  13. Y. C. Jeong, S. Lee, and J. K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007).
    [CrossRef] [PubMed]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
  15. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998).
    [CrossRef]
  16. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  17. Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
    [CrossRef]
  18. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. A 17(7), 1147–1157 (2000).
    [CrossRef]
  19. V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
    [CrossRef]

2007

Y. C. Jeong, S. Lee, and J. K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007).
[CrossRef] [PubMed]

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

2005

2004

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

2001

J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).

2000

1999

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999).
[CrossRef]

1998

1997

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36(19), 4339–4348 (1997).
[CrossRef] [PubMed]

1996

1994

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

Ananthavel, S.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Askham, F.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Atoda, N.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Barlow, S.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Bashaw, M.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Beal, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Binnig, G. K.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Boyd, C.

Boyd, J. E.

Calvo, M. L.

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

Campbell, S.

Cheben, P.

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

Close, C.

Cole, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Colvin, V.

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Colvin, V. L.

Cumpston, B.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Curtis, K.

del Monte, F.

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

Despont, M.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Dhar, L.

Drechsler, U.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Dürig, U.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Dyer, D.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Erskine, L.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Gallego, S.

Gleeson, M.

Häberle, W.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Hale, A.

Harris, A.

Harris, A. L.

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Hayashi, S.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Heikal, A.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Hill, A.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998).
[CrossRef]

Ichimura, I.

Ihas, B.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Jenkins, B.

Jeong, Y. C.

Katz, H. E.

Kelly, J.

Kino, G. S.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

Kuebler, S.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Larson, R.

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Lawrence, J.

J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).

Lawrence, J. R.

Lee, I.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Lee, S.

Levinos, N.

Lutwyche, M. I.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Martínez-Matos, Ó.

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

McCord-Maughon, D.

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Michaels, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Miller, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Nakano, T.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Neipp, C.

O’Neill, F.

O'Neill, F.

J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).

Orlov, S.

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Park, J. K.

Piazzolla, S.

Psaltis, D.

Pu, A.

Quirin, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Rodrigo, J. A.

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

Rothuizen, H.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Schilling, F. C.

Schilling, M.

Schilling, M. L.

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Schnoes, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Schnoes, M. G.

Setthachayanon, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

Stutz, R.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Tackitt, M.

Tominaga, J.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Trentler, T.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Trentler, T. J.

Vega-Cantu, Y. I.

Vettiger, P.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Wahi, R. K.

Wang, P.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Widmer, R.

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Wilson, W.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000).
[CrossRef]

Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).

J. Appl. Phys.

V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Nature

B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).

Proc. IEEE

L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004).
[CrossRef]

Proc. SPIE

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004).
[CrossRef]

Science

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of page-wise holographic recording and decisive parameters (λ: wavelength, NA: numerical aperture) of recording volume (ν).

Fig. 2
Fig. 2

Molecular structures of component materials for photopolymer, PPGDGE (Polypropylene glycol diglycidyl ether), PHA (Pentaethylenehexamine), BzMA (Benzyl methacrylate), I819 (Irgacure819), * calculated by Lorentz-Lorentz equation.

Fig. 3
Fig. 3

Experimental apparatus of holographic recording, definition of diffraction efficiency, AFM result of grating period (~780nm) are depicted.

Fig. 4
Fig. 4

(a) Correlation between experimental and simulated results of diffraction efficiency with angle rotation (b) diffraction efficiency (■) and Bragg angle deviation (▲) at different asymmetric recording angles: 0° indicates vertical grating vector.

Fig. 5
Fig. 5

CCD captured image of page-wise pixels (top) and its signal intensity profile of the 16 upper pixels (bottom) (a) transmitted (b) retrieved gray image (insect: photograph of hologram recorded photopolymer) (c) binary-converted retrieved image through photopolymer, respectively.

Fig. 6
Fig. 6

(a) Long-term archival feasibility of the samples with/without post UV treatment for 55 days: all diffraction efficiency values were normalized by the initial value. (b) schematic representation of change in refractive index difference during post UV treatment

Tables (1)

Tables Icon

Table 1 Diffraction efficiency, refractive index modulation, energetic sensitivity, volume shrinkage, and angle deviation, *, ** calculated from Ref [14], [9], respectively. E80: required energy to reach 80% of maximum diffraction efficiency.

Metrics