Abstract

We describe integrated air-core waveguides with Bragg reflector claddings, fabricated by controlled delamination and buckling of sputtered Si/SiO2 multilayers. Thin film deposition parameters were tailored to produce a desired amount of compressive stress, and a patterned, embedded fluorocarbon layer was used to define regions of reduced adhesion. Self-assembled air channels formed either spontaneously or upon heating-induced decomposition of the patterned film. Preliminary optical experiments confirmed that light is confined to the air channels by a photonic band-gap guidance mechanism, with loss ~5 dB/cm in the 1550 nm wavelength region. The waveguides employ standard silicon processes and have potential applications in MEMS and lab-on-chip systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
    [CrossRef]
  2. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009).
    [CrossRef] [PubMed]
  3. T. C. Shen, Y. S. Kim, J. A. Bur, and S.-Y. Lin, “Optical characterization of bending efficiency in on-chip hollow-core Bragg waveguides at λ = 1.5 μm,” J. Lightwave Technol. 28(11), 1714–1719 (2010).
    [CrossRef]
  4. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
    [CrossRef] [PubMed]
  5. E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. Decorby, “Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling,” Opt. Express 17(20), 17369–17375 (2009).
    [CrossRef] [PubMed]
  6. S.-S. Lo, M.-S. Wang, and C.-C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors,” Opt. Express 12(26), 6589–6593 (2004).
    [CrossRef] [PubMed]
  7. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, “Guided self-assembly of integrated hollow Bragg waveguides,” Opt. Express 15(7), 3902–3915 (2007).
    [CrossRef] [PubMed]
  8. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007).
    [CrossRef] [PubMed]
  9. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
    [CrossRef]
  10. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008).
    [CrossRef] [PubMed]
  11. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
    [CrossRef] [PubMed]
  12. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, and J. Rivory, “Making an omnidirectional reflector,” Appl. Opt. 40(28), 5056–5063 (2001).
    [CrossRef]
  13. H. Piller, “Silicon (amorphous) (a-Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, San Diego, 1998).
  14. Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
    [CrossRef]
  15. H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
    [CrossRef]
  16. H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, “a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters,” Appl. Opt. 43(17), 3548–3554 (2004).
    [CrossRef] [PubMed]
  17. H. Windischmann, “Intrinsic stress in sputter-deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17(6), 547–596 (1992).
    [CrossRef]
  18. B. Bhushan, “Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction,” J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003).
    [CrossRef]
  19. Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005).
    [CrossRef]
  20. H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
    [CrossRef]
  21. B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
    [CrossRef]
  22. A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
    [CrossRef]
  23. J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
    [CrossRef]
  24. Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005).
    [CrossRef]
  25. P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
    [CrossRef]
  26. M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
    [CrossRef]
  27. W. D. Nix, “Mechanical properties of thin films,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 20(11), 2217–2245 (1989).
    [CrossRef]
  28. S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007).
    [CrossRef]

2010 (1)

2009 (5)

2008 (2)

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (4)

Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005).
[CrossRef]

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005).
[CrossRef]

2004 (3)

2003 (1)

B. Bhushan, “Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction,” J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003).
[CrossRef]

2002 (1)

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

1999 (1)

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

1998 (1)

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

1994 (1)

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

1992 (1)

H. Windischmann, “Intrinsic stress in sputter-deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17(6), 547–596 (1992).
[CrossRef]

1989 (1)

W. D. Nix, “Mechanical properties of thin films,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 20(11), 2217–2245 (1989).
[CrossRef]

Allen, S. A. B.

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

Allen, T.

Ayon, A. A.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Barber,

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Bhushan, B.

B. Bhushan, “Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction,” J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003).
[CrossRef]

Braff, R.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Brown, C.

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

Brunet-Bruneau, A.

Bur, J. A.

Chang-Hasnain, C. J.

Charron, E.

Chen, C.-C.

Chen, D.-Z.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Clement, T. J.

Dasgupta, S.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007).
[CrossRef]

de Lima, M. M.

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

DeCorby, R. G.

Dongliang Yin, J. P.

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Elders, J.

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

Elwenspoek, M.

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

Epp, E.

Fisson, S.

Gallas, B.

Gardeniers, J. G. E.

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

Ghatak, A.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007).
[CrossRef]

Han, J.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

Hanaizumi, O.

Hawkins, A. R.

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Hiratani, Y.

Huang, F.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Hutchinson, J. W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Jansen, H. V.

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

Jiang, Y.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Joe, D.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

Joseph, P. J.

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

Karagodsky, V.

Kelleher, H. A.

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

Khanna, R.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Kim, Y. S.

Kohl, P. A.

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

Koyama, F.

Kumar, M.

Lacerda, R. G.

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

LaVigne, G.

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

Lee, H.-Y.

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

Lee, K.-R.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Li, M.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Lin, S.-Y.

Lo, S.-S.

Makino, H.

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

Marques, F. C.

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

Masel, R. I.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

McMullin, J. N.

Menon, A.

Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005).
[CrossRef]

Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005).
[CrossRef]

Mensing, G.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

Moon, M.-W.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Nguyen, H. T.

Nix, W. D.

W. D. Nix, “Mechanical properties of thin films,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 20(11), 2217–2245 (1989).
[CrossRef]

Oh, K. H.

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Pai, M. M.

Pal, B. P.

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007).
[CrossRef]

Pesala, B.

Ponnampalam, N.

Rivory, J.

Sakaguchi, T.

Sawin, H. H.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Schmidt, H.

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Schmidt, M. A.

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Sedgwick, F. G.

Shannon, M. A.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

Shen, T. C.

Shiraishi, K.

Smith, B. K.

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

Sniegowski, J. J.

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

Song, Q.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Song, Y.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Tanaka, A.

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

Tilmans, H. A. C.

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

Vilcarromero, J.

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

Vuye, G.

Wang, H.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Wang, M.-S.

Windischmann, H.

H. Windischmann, “Intrinsic stress in sputter-deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17(6), 547–596 (1992).
[CrossRef]

Xie, B.

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Yao, T.

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

Yeom, J.

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

Yoda, H.

Zhou, Y.

Zhuang, Y. X.

Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005).
[CrossRef]

Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005).
[CrossRef]

Acta Mater. (1)

M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

H. Windischmann, “Intrinsic stress in sputter-deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17(6), 547–596 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

J. Appl. Phys. (1)

M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (2)

J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009).
[CrossRef]

P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (2)

Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008).
[CrossRef]

Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

B. Bhushan, “Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction,” J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000).
[CrossRef]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci. (1)

W. D. Nix, “Mechanical properties of thin films,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 20(11), 2217–2245 (1989).
[CrossRef]

Opt. Commun. (1)

S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994).
[CrossRef]

B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998).
[CrossRef]

Tribol. Lett. (1)

Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005).
[CrossRef]

Other (1)

H. Piller, “Silicon (amorphous) (a-Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, San Diego, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Results for a 4-period Bragg reflector are shown. For the theoretical curves, layer thicknesses of 102 nm and 260 nm were used for a-Si and SiO2, respectively. (a) Reflectance at near normal incidence as measured with a spectrophotometer (blue symbols) and as modeled (green line). To illustrate the predicted omnidirectional band for TE polarized light, the modeled reflectance for TE polarized light at 88 degrees incidence angle is also shown (red dotted line). (b) Reflectance at 20 degrees incidence for TM polarization, as measured by a VASE instrument (blue symbols) and as modeled (green line). The discontinuity and discrepancy in the experimental data above ~1400 nm is due to optical loss in the VASE instrument. Modeled reflectance for TM polarized light at 88 degrees incidence angle is also shown (red dotted line). (c) Optical constants from Ref [13]. for a-Si, used in the modeling. Also shown is the index extracted from fitting to experimental data. (d) Net stress of the multilayer measured at a series of increasing and then decreasing temperatures, after several days of storage in air. The stress measured soon after deposition was −235 MPa.

Fig. 2
Fig. 2

(a) A microscope image of a patterned fluorocarbon layer (~15 nm thick) is shown. Five strips, each 80 μm wide, are faintly visible. Alignment mark features (crosses and squares) are also visible, near the top and bottom of the image. (b) Remaining thickness of fluorocarbon layers with two different starting thicknesses is plotted versus annealing temperature (see main text for details).

Fig. 3
Fig. 3

Schematic showing the process steps used to fabricate hollow waveguides: (a) a 4-period Bragg reflector was deposited, (b) a fluorocarbon LAL layer was deposited and patterned by liftoff, (c) a second 4-period Bragg mirror (with net compressive stress) was deposited, and (d) the sample was heated to promote loss of adhesion in the regions of the LAL.

Fig. 4
Fig. 4

Images of buckled waveguides are shown. (a) Microscope image of an array of five waveguides with 80 μm base width. The red circle indicates a typical defect in one of the guides. (b) Higher magnification image of two of the guides from part a. (c) SEM image of the cleaved facet of a waveguide with 40 μm base width.

Fig. 5
Fig. 5

(a) Topographical scan is shown for a waveguide with 80 μm base width and ~3.6 μm peak height, as obtained using an optical profilometer. (b) Predicted buckle height according to elastic theory given net compressive stress of 235 MPa and effective medium Young’s modulus of Y = 40 GPa (solid line) or Y = 80 GPa (dashed line). The symbols show the mean values measured experimentally.

Fig. 6
Fig. 6

TE light guiding results are shown for a waveguide with 60 μm base width and peak height ~2.5 μm. (a) Waveguide end facet images captured by an infrared camera via a 60x objective lens, for varying input coupling conditions of a 1560 nm laser source. (b) Scattered light image captured by an infrared camera for a waveguide ~6 mm in length, with supercontinuum light coupled at left. The bright spot at right is the output facet. (c) Relative power captured by the infrared camera versus distance along the waveguide axis, for an input wavelength of 1560 nm. The peaks near 3.4 mm and the bright scattering point in the image of part (b) correspond to the same location on the waveguide. The red line is a linear fit to the data.

Fig. 7
Fig. 7

(a) Predicted propagation loss for the fundamental TE mode of a slab Bragg waveguide with 4-period mirrors and air-core height 2.5 μm, assuming lossless Si layers (green dotted curve) or with Si loss included (blue solid curve). (b) Experimentally measured transmission spectrum for two waveguide samples, each with peak core height ~2.5 μm. The apparent transmission below ~900 nm is an artifact arising from aliasing in the diffraction-grating based OSA.

Metrics