Abstract

To better understand the limitations of high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO), we describe an imaging model that examines the smallest cone photoreceptors in the fovea of normal human subjects and analyze how different factors contribute to their resolution. The model includes basic optical factors such as wavelength and pupil size, and defines limits caused by source coherence which are specific to the AOSLO imaging modality as well as foveal cone structure. The details of the model, its implications for imaging, and potential techniques to circumvent the limitations are discussed in this paper.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 .
    [PubMed]
  2. E. A. Rossi and A. Roorda, “The limits of high contrast photopic visual acuity with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 47, 5402 (2006).
  3. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
    [CrossRef] [PubMed]
  4. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
    [CrossRef]
  5. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
    [CrossRef]
  6. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
    [PubMed]
  7. S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
    [CrossRef]
  8. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
    [PubMed]
  9. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  10. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12230 .
    [CrossRef] [PubMed]
  11. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731 .
    [CrossRef] [PubMed]
  12. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [CrossRef]
  13. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008).
    [CrossRef] [PubMed]
  14. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
    [CrossRef] [PubMed]
  15. G. L. Walls, The vertebrate eye and its adaptive radiation (Cranbrook Institute of Science, Bloomfield Hills, MI, 1942), Chap. 3,8.
  16. J. E. Dowling, The retina: an approachable part of the brain (Harvard University Press, Cambridge, MA, 1987), Chap. 2.
  17. M. Schultze, “The retina,” in Manual of human and comparative histology, S. Stricker, ed. (New Sydenham Society, London, 1873).
  18. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Inter-subject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. (Accepted).
    [PubMed]
  19. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
    [CrossRef] [PubMed]
  20. Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from Benchtop to Clinic,” Proc. SPIE 6306, 63060V (2006).
    [CrossRef]
  21. A. M. Laties, and B. Burnside, “The maintenance of photoreceptor orientation,” in Motility and Cell Function: Proceedings of the First John M. Marshall Symposium in Cell Biology, F. Pepe, V. Nachmias and J.W. Sanger, eds. (Academic Press, New York, 1978).
  22. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 404–412 (2002).
    [CrossRef]
  23. W. Gao, R. S. Jonnal, B. Cense, O. P. Kocaoglu, Q. Wang, and D. T. Miller, “Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor,” Opt. Express 17(25), 23085–23097 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23085 .
    [CrossRef]
  24. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [CrossRef] [PubMed]
  25. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16141 .
    [CrossRef] [PubMed]
  26. B. Borwein, “Scanning electron microscopy of monkey foveal photoreceptors,” Anat. Rec. 205(3), 363–373 (1983).
    [CrossRef] [PubMed]
  27. S. L. Polyak, The Retina (University of Chicago Press, Chicago, IL, 1941), Chap. 19.
  28. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007).
    [CrossRef]
  29. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
    [CrossRef]
  30. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
    [CrossRef] [PubMed]
  31. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [CrossRef] [PubMed]
  32. G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
    [PubMed]
  33. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am. 53(1), 71–85 (1963).
    [CrossRef]
  34. B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).
  35. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5257 .
    [CrossRef] [PubMed]
  36. A. Roorda and Y. Zhang, “Mechanism for Cone Reflectivity Revealed with low coherence AOSLO imaging,” Invest. Ophthalmol. Vis. Sci. 46, 2433 (2005).
  37. T. Wilson, and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London 1984), Chap. 3.
  38. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
    [CrossRef] [PubMed]
  39. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-487 .
    [CrossRef] [PubMed]
  40. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19(6), 653–667 (1980).
    [PubMed]
  41. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
    [CrossRef] [PubMed]

2010 (3)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[CrossRef]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5257 .
[CrossRef] [PubMed]

2009 (1)

2008 (3)

W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008).
[CrossRef] [PubMed]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

2007 (7)

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16141 .
[CrossRef] [PubMed]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007).
[CrossRef]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
[CrossRef]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731 .
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
[CrossRef]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
[CrossRef]

2006 (6)

2005 (5)

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

A. Roorda and Y. Zhang, “Mechanism for Cone Reflectivity Revealed with low coherence AOSLO imaging,” Invest. Ophthalmol. Vis. Sci. 46, 2433 (2005).

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

2003 (1)

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

2002 (2)

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

1983 (1)

B. Borwein, “Scanning electron microscopy of monkey foveal photoreceptors,” Anat. Rec. 205(3), 363–373 (1983).
[CrossRef] [PubMed]

1980 (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19(6), 653–667 (1980).
[PubMed]

1967 (1)

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[PubMed]

1963 (1)

Ahlers, C.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Arathorn, D. W.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Besecker, J. R.

Bigelow, C. E.

Bloom, B.

Borwein, B.

B. Borwein, “Scanning electron microscopy of monkey foveal photoreceptors,” Anat. Rec. 205(3), 363–373 (1983).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M. C. W.

Carroll, J.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

Cense, B.

Chen, L.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Derby, J. C.

Doble, N.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

Donnelly Iii, W.

Drexler, W.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Dubra, A.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Elsner, A. E.

Enoch, J. M.

Ferguson, D.

Ferguson, R. D.

Gao, W.

Grieve, K.

Hammer, D. X.

Hebert, T.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Hermann, B.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Hofer, H.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

Hofer, H. J.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

Iftimia, N. V.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Kocaoglu, O. P.

Kumar, G.

S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
[CrossRef]

Leitgeb, R.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Li, K. Y.

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
[CrossRef]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Inter-subject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. (Accepted).
[PubMed]

Merigan, W. H.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Michels, S.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Miller, D. T.

Morgan, J. I.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

Parker, A.

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Poonja, S.

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from Benchtop to Clinic,” Proc. SPIE 6306, 63060V (2006).
[CrossRef]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

Povazay, B.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Putnam, N. M.

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

Qi, X.

Queener, H.

Rha, J.

Romero-Borja, F.

Roorda, A.

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[CrossRef]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
[CrossRef]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731 .
[CrossRef] [PubMed]

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
[CrossRef]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-487 .
[CrossRef] [PubMed]

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from Benchtop to Clinic,” Proc. SPIE 6306, 63060V (2006).
[CrossRef]

E. A. Rossi and A. Roorda, “The limits of high contrast photopic visual acuity with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 47, 5402 (2006).

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12230 .
[CrossRef] [PubMed]

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

A. Roorda and Y. Zhang, “Mechanism for Cone Reflectivity Revealed with low coherence AOSLO imaging,” Invest. Ophthalmol. Vis. Sci. 46, 2433 (2005).

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 .
[PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 404–412 (2002).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Inter-subject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. (Accepted).
[PubMed]

Rossi, E. A.

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[CrossRef]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

E. A. Rossi and A. Roorda, “The limits of high contrast photopic visual acuity with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 47, 5402 (2006).

Sacu, S.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Sattmann, H.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Schmidt-Erfurth, U.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Stevenson, S.

S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
[CrossRef]

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Tarrant, J.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

Tiruveedhula, P.

Tumbar, R.

Unterhuber, A.

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

Ustun, T. E.

Vogel, C. R.

Wang, Q.

Weiser, P.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[PubMed]

Williams, D. R.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 404–412 (2002).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19(6), 653–667 (1980).
[PubMed]

Wolfe, R.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Yang, Q.

Zhang, Y.

Zou, W.

Anat. Rec. (1)

B. Borwein, “Scanning electron microscopy of monkey foveal photoreceptors,” Anat. Rec. 205(3), 363–373 (1983).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003).
[CrossRef] [PubMed]

B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).

K. Y. Li, P. Tiruveedhula, and A. Roorda, “Inter-subject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. (Accepted).
[PubMed]

E. A. Rossi and A. Roorda, “The limits of high contrast photopic visual acuity with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 47, 5402 (2006).

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

A. Roorda and Y. Zhang, “Mechanism for Cone Reflectivity Revealed with low coherence AOSLO imaging,” Invest. Ophthalmol. Vis. Sci. 46, 2433 (2005).

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19(6), 653–667 (1980).
[PubMed]

J. Biomed. Opt. (2)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008).
[CrossRef] [PubMed]

Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967).
[PubMed]

J. Refract. Surg. (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005).
[PubMed]

J. Vis. (4)

S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007).
[CrossRef]

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[CrossRef] [PubMed]

N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 404–412 (2002).
[CrossRef]

Nat. Neurosci. (1)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[CrossRef]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

Opt. Express (7)

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16141 .
[CrossRef] [PubMed]

W. Gao, R. S. Jonnal, B. Cense, O. P. Kocaoglu, Q. Wang, and D. T. Miller, “Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor,” Opt. Express 17(25), 23085–23097 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23085 .
[CrossRef]

R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5257 .
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 .
[PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12230 .
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731 .
[CrossRef] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-487 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010).
[PubMed]

Proc. SPIE (2)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from Benchtop to Clinic,” Proc. SPIE 6306, 63060V (2006).
[CrossRef]

Other (6)

A. M. Laties, and B. Burnside, “The maintenance of photoreceptor orientation,” in Motility and Cell Function: Proceedings of the First John M. Marshall Symposium in Cell Biology, F. Pepe, V. Nachmias and J.W. Sanger, eds. (Academic Press, New York, 1978).

S. L. Polyak, The Retina (University of Chicago Press, Chicago, IL, 1941), Chap. 19.

G. L. Walls, The vertebrate eye and its adaptive radiation (Cranbrook Institute of Science, Bloomfield Hills, MI, 1942), Chap. 3,8.

J. E. Dowling, The retina: an approachable part of the brain (Harvard University Press, Cambridge, MA, 1987), Chap. 2.

M. Schultze, “The retina,” in Manual of human and comparative histology, S. Stricker, ed. (New Sydenham Society, London, 1873).

T. Wilson, and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London 1984), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Single linearly scaled OCT image illustrating attenuation of the IS/OS junction layer (arrow). (b) Composite OCT image showing regions over which the profiles were averaged (boxes). (c) Profiles from the regions in (b). In this case the ratio of reflectance at the posterior tips of the OS divided by reflectance at the IS/OS junction at the fovea was 4.18 and at 1 deg was 1.16.

Fig. 2
Fig. 2

En-face OCT images at the photoreceptor layers (left) and corresponding summed layers shown in cross-sectional image through the fovea (right). (a) Composite image created from 27 depth slices through the IS/OS junction layer. Decreased reflectivity within 0.5 deg of the fovea is clearly visible (arrow). (b) Composite image created from 15 depth slices through the posterior tips of the OS.

Fig. 3
Fig. 3

Increase in reflectance ratio associated with IS/OS layer attenuation in the central fovea. Average values for 9 subjects.

Fig. 4
Fig. 4

Two neighboring cone photoreceptors with a cross section of a point spread function illustrated at the tips of the inner segments, where the instrument would be focused during imaging. Each cone acts as a point source with the points of reflection that contribute to the output labeled in the figure. Points 1 and 2 scatter from the IS/OS junction and points 3 and 4 scatter from the posterior tips of the OS. The distances between adjacent photoreceptors, w, and between the two layers of reflection, d, combined with properties of the imaging source determine the extent to which inference artifacts are seen in the image.

Fig. 5
Fig. 5

Model foveal cone mosaics using 840 nm light and a 6 mm pupil. (a) Incoherent image (b) Coherent AOSLO image which allows for interference to occur between the two scattering sources within each cone, and (c) Low-coherence AOSLO image which does not allow for interference between the two scattering sources within each cone.

Fig. 6
Fig. 6

Both images are of the same photoreceptor mosaic in a healthy normal eye. Both images are a registered sum of 100 frames from a single video. Variations in phase were not expected to have occurred over the course of one video and the addition of multiple frames is used here to increase the S:N of the image. The left image is taken with coherent 660 nm light and the right is taken with low coherent 680 nm light. The cone reflectance in the right image is much less variable, and the image reveals more of the contiguous close-packed cone photoreceptor array. The FFT of the image (lower left inset) reveals a better defined ring corresponding to the periodic cone array for the low-coherent image.

Fig. 7
Fig. 7

Summing multiple coherent (or AOSLO) images approaches the incoherent image. (a) Single coherent image (b) Sum of 100 coherent images (c) Incoherent image.

Fig. 8
Fig. 8

Plots illustrate the maximum (a) and mean (b) intensities of difference images between sums of independent coherent images and the corresponding incoherent image, where all images have a normalized maximum intensity of 255. For images containing 2, 3, and 4 cones, the sum of independent coherent images approaches the incoherent image and images with more cones require the addition of more images.

Fig. 9
Fig. 9

AOSLO image of the foveal center of a healthy normal eye taken with broadband 840 nm light. The image is a sum of 279 frames from an individual video where variations in phase are not expected to occur, similar to the images in Fig. 6. A contiguous, close-packed mosaic is visible at the margins of the image but at the foveal center, the mosaic of cones is less clear. Despite the fact that cones are not resolved, the image still has high contrast, exhibiting a speckle-like appearance.

Fig. 10
Fig. 10

Registered sums of 150 frames from an AOSLO video of a model eye with a paper retina. The left image is taken with a coherent laser diode (660 nm) and the right image is with a low-coherent superluminescent diode (680 nm). In both cases, there are high contrast interference artifacts in the image, with only a slight reduction in its contrast from the SLD.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w e i g h t = 2.8532 r 2 4.9122 r + 3.4963.
E j ( r ) = c E o 2 J 1 ( k r j ) k r j exp ( i 2 π ϕ ( t ) j ) .
I c ( | E 1 | 2 + | E 2 | 2 + | E 3 | 2 + | E 4 | 2 + Re { E 1 E 2 * exp [ i 2 π ( ϕ 1 ϕ 2 ) ] + E 1 E 3 * exp [ i 2 π ( ϕ 1 ϕ 3 ) ] + E 1 E 4 * exp [ i 2 π ( ϕ 1 ϕ 4 ) ] + E 2 E 1 * exp [ i 2 π ( ϕ 2 ϕ 1 ) ] + E 2 E 3 * exp [ i 2 π ( ϕ 2 ϕ 3 ) ] + E 2 E 4 * exp [ i 2 π ( ϕ 2 ϕ 4 ) ] + E 3 E 1 * exp [ i 2 π ( ϕ 3 ϕ 1 ) ] + E 3 E 2 * exp [ i 2 π ( ϕ 3 ϕ 2 ) ] + E 3 E 4 * exp [ i 2 π ( ϕ 3 ϕ 4 ) ] + E 4 E 1 * exp [ i 2 π ( ϕ 4 ϕ 1 ) ] + E 4 E 2 * exp [ i 2 π ( ϕ 4 ϕ 2 ) ] + E 4 E 3 * exp [ i 2 π ( ϕ 4 ϕ 3 ) ] } ) ( 2 J 1 ( k r j ) k r j ) 2 .
I c ( | E 1 | 2 + | E 2 | 2 + | E 3 | 2 + | E 4 | 2 ) ( 2 J 1 ( k r j ) k r j ) 2 .
I c ( | E 1 | 2 + | E 2 | 2 + | E 3 | 2 + | E 4 | 2 + Re { E 1 E 2 * exp [ i 2 π ( ϕ 1 ϕ 2 ) ] + E 3 E 4 * exp [ i 2 π ( ϕ 3 ϕ 4 ) ] + E 2 E 1 * exp [ i 2 π ( ϕ 2 ϕ 1 ) ] + E 4 E 3 * exp [ i 2 π ( ϕ 4 ϕ 3 ) ] } ) ( 2 J 1 ( k r j ) k r j ) 2 c ( | E 1 | 2 + | E 2 | 2 + | E 3 | 2 + | E 4 | 2 + | E 1 E 2 | 2 cos [ 2 π ( ϕ 1 ϕ 2 ) ] + | E 3 E 4 | 2 cos [ 2 π ( ϕ 3 ϕ 4 ) ] ) ( 2 J 1 ( k r j ) k r j ) 2 .

Metrics