Abstract

We demonstrate a highly elongated (aspect ratio over 500:1) optical breakdown in water produced by a single pulse of a picosecond laser focused with a combination of an axicon and a lens. Locations of the proximal and distal ends of the breakdown region can be adjusted by modifying radial intensity distribution of the incident beam with an amplitude mask. Using Fresnel diffraction theory we derive a transmission profile of the amplitude mask to create a uniform axial intensity distribution in the breakdown zone. Experimentally observed dynamics of the bubbles obtained with the designed mask is in agreement with the theoretical model. A system producing an adjustable cylindrical breakdown can be applied to fast linear or planar dissection of transparent materials. It might be useful for ophthalmic surgical applications including cataract surgery and crystalline lens softening.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
    [CrossRef] [PubMed]
  2. S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
    [CrossRef] [PubMed]
  3. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [CrossRef] [PubMed]
  4. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26(11), 819–821 (2001).
    [CrossRef]
  5. Z. Nagy, J. F. Doane, D. S. Durrie, M. C. Kraff, R. L. Lindstrom, S. G. Slade, and R. F. Steinert, “Use of the femtosecond laser system in cataract surgery” presented at the American Academy of Ophthalmology Annual Meeting, San Francisco, CA, USA, 24–27 October 2009.
  6. J. Durnin, “Exact solutions for nondiffracting beams. I. Scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  7. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44, 592–592 (1954).
    [CrossRef]
  8. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
    [CrossRef]
  9. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
    [CrossRef]
  10. O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
    [PubMed]
  11. T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [CrossRef] [PubMed]
  12. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
    [CrossRef] [PubMed]
  13. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  14. Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
    [CrossRef]
  15. S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
    [CrossRef]
  16. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).
    [CrossRef] [PubMed]
  17. A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry-Perot resonator,” J. Opt. Soc. Am. A 9, 282–286 (1992).
    [CrossRef]
  18. M. Born, and E. Wolf, Principles of Optics (Pergamon, 1970).
  19. K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005).
    [CrossRef]
  20. P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
    [CrossRef]
  21. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
    [CrossRef] [PubMed]
  22. W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
    [CrossRef]
  23. E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
    [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  25. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [CrossRef] [PubMed]
  26. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
    [CrossRef]
  27. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
    [CrossRef]
  28. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
    [CrossRef]
  29. H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
    [CrossRef] [PubMed]
  30. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996).
    [CrossRef]
  31. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [CrossRef]
  32. S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
    [CrossRef]
  33. R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
    [CrossRef] [PubMed]
  34. G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
    [CrossRef] [PubMed]
  35. C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
    [PubMed]

2010 (4)

M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
[CrossRef] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

2009 (3)

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[CrossRef] [PubMed]

2008 (4)

O. Brzobohatý, T. Cizmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16(17), 12688–12700 (2008).
[PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef]

2007 (4)

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

2006 (2)

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

2005 (2)

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005).
[CrossRef]

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

2002 (3)

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

1997 (1)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

1996 (2)

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996).
[CrossRef]

1992 (1)

1989 (1)

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. I. Scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

1954 (1)

Agate, B.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Bhuyan, M. K.

Bille, J. F.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

Birngruber, R.

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Brinkmann, R.

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Brown, C. T. A.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Brujan, E.-A.

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

Brzobohatý, O.

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Cain, C. P.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
[CrossRef]

Cizmár, T.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Comrie, M.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Courvoisier, F.

Cox, A. J.

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

T. Cizmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[CrossRef] [PubMed]

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Dibble, D. C.

Dudley, J. M.

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. Scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Ertmer, W.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Filkorn, T.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

Framme, C.

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Friberg, A. T.

Fritzsche, W.

Fromm, M.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Furfaro, L.

Garcés-Chávez, V.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Gerten, G.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Gunn-Moore, F.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Hall, R. T.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Han, M.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

Huettmann, G.

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

Inoue, T.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Jacquot, M.

Juhasz, T.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

Kennedy, P. K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Khoo, B. C.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

Kizuka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Klaseboer, E.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

König, K.

Kracht, D.

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Kurz, T.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[CrossRef]

Lacourt, P.-A.

Lauterborn, W.

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[CrossRef]

Lim, K. Y.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Liu, X.

Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
[CrossRef]

Loesel, F. H.

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

Lubatschowski, H.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Matsuoka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

McLeod, J. H.

Mehendale, S. C.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Mishra, S. R.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Moloney, J. V.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Nagy, Z.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Niemz, M. H.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Noojin, G. D.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Oberheide, U.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Ohl, C.-D.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Pelekasis, N. A.

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005).
[CrossRef]

Pu, J.

Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
[CrossRef]

Quinto-Su, P. A.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef]

Ram, S. P.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Riemann, I.

Ripken, T.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

Rockwell, B. A.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Roider, J.

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Rumohr, M.

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

Sarayba, M.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

Schuele, G.

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Schumacher, S.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Stevenson, D. J.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Stolarski, D. J.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

Sun, H.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

Takacs, A.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Thomas, R. J.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

Thompson, C. R.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Tiwari, S. K.

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Toth, C. A.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

Tsampoula, X.

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Tsiglifis, K.

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005).
[CrossRef]

Turunen, J.

Vasara, A.

Venugopalan, V.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Wegener, A.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Withford, M. J.

Wright, E. M.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Zemánek, P.

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model,” IEEE J. Quantum Electron. 32, 1717–1722 (1996).
[CrossRef]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. QE-33, 127–137 (1997).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

G. Schuele, M. Rumohr, G. Huettmann, and R. Brinkmann, “RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen,” Invest. Ophthalmol. Vis. Sci. 46(2), 714–719 (2005).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (1)

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[CrossRef] [PubMed]

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[CrossRef]

Nature (1)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers (1)

C. Framme, G. Schuele, J. Roider, D. Kracht, R. Birngruber, and R. Brinkmann, “Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits,” Ophthalmic Surg. Lasers 33(5), 400–409 (2002).
[PubMed]

Opt. Eng. (2)

Y. Chen, J. Pu, and X. Liu, “Axial intensity distribution of lens axicon illuminated by Gaussian-Schell model beam,” Opt. Eng. 46, 018003 (2007).
[CrossRef]

S. R. Mishra, S. K. Tiwari, S. P. Ram, and S. C. Mehendale, “Generation of hollow conic beams using a metal axicon mirror,” Opt. Eng. 46, 084002 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Fluids (1)

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects,” Phys. Fluids 17, 102101 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1 Pt 2), 016308 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Schumacher, U. Oberheide, M. Fromm, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Fs-lentotomy: first in vivo studies on rabbit eyes with a 100kHz laser system,” Proc. SPIE 6844, 68440V (2008).
[CrossRef]

Rep. Prog. Phys. (1)

W. Lauterborn and T. Kurz, “Physics of bubble oscillations,” Rep. Prog. Phys. 73, 106501 (2010).
[CrossRef]

Vision Res. (1)

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[CrossRef] [PubMed]

Other (3)

Z. Nagy, J. F. Doane, D. S. Durrie, M. C. Kraff, R. L. Lindstrom, S. G. Slade, and R. F. Steinert, “Use of the femtosecond laser system in cataract surgery” presented at the American Academy of Ophthalmology Annual Meeting, San Francisco, CA, USA, 24–27 October 2009.

M. Born, and E. Wolf, Principles of Optics (Pergamon, 1970).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Diagram of the focusing system including an axicon and a lens. Focal plane of the lens is indicated by two arrows. Geometrical rays at various radii from the beam center (shown as lines) cross the axis at distinct locations. b) Experimental setup: laser is synchronized with the flash (an LED) with variable delay generator (temporal resolution 100ns).

Fig. 2
Fig. 2

Intensity distribution within the breakdown region visualized by two-photon fluorescence (green false-color) with overlaid plasma (red false-color, indicated by inclined arrow). Vertical arrows mark the location of the focal plane of the lens. Scale bar represents 100μm. Laser beam is incident from the left.

Fig. 3
Fig. 3

Evolution of the bubble produced by a pulse of 65μJ. From top to bottom: the frames are taken at less than 0.1, 5, 10, and 19 μs, respectively. The zero of the ruler is located at the water boundary facing the laser beam. The laser is incident from the left.

Fig. 4
Fig. 4

Effect of “disk-shaped” mask of various radii Rdisk on the location of the proximal end of the bubble. From top to bottom: bubble without a mask, Rdisk = 1.5mm, 2mm, 3mm, respectively. Note that the mask does not affect the location of the distal end of the bubble. All frames are captured within less than 100ns after the laser pulse.

Fig. 5
Fig. 5

Dynamics of a bubble produced with a mask of Rdisk = 1.5mm. From top to bottom the frames are acquired at: less than 100ns, 6μs, 9μs, and 11μs after the laser pulse.

Fig. 6
Fig. 6

a) Axial fluence distribution without (green) and with (blue) the “gradient” mask. Dashed line indicates the dielectric breakdown threshold. Pulse energy of 65μJ was used for calculations; b) “Gradient” mask intensity transmission profile.

Fig. 7
Fig. 7

Radial fluence profile calculated by formula (1) at z = 18mm without (green) and with the mask (blue). Dashed line indicates the estimated breakdown threshold of 8J/cm2.

Fig. 8
Fig. 8

Dynamics of a bubble produced with the “gradient” mask at less than 100ns, 2μs, 4μs, and 9μs after the laser pulse. Compared to the unmasked beam, this bubble is narrower, more uniform, and has shorter lifetime.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( ρ , z ) = 2 E π w 2 k 2 z 2 | 0 R exp [ r 2 w 2 i k ( r sin θ + r 2 2 f r 2 2 z ) ] J 0 ( k r ρ z ) r d r | 2
f = d a i r + n w ( f l e n s d a i r )
ψ ( r , z ) = r 2 2 z r sin θ r 2 2 f
ρ c = f z sin θ f z
I a x i a l ( z ) = 2 E π w 2 k 2 z 2 exp ( 2 ρ c 2 / w 2 ) [ 2 π k ψ ( 2 ) ( ρ c , z ) ] ρ c 2 T ( ρ c ) = 4 E w 2 k z f 3 sin 2 θ ( f z ) 3 exp [ 2 ( f z sin θ ) 2 w 2 ( f z ) 2 ] T ( f z sin θ f z ) .
T ( r ) = ( r min + f sin θ r + f sin θ ) 2 r min r exp [ 2 r 2 w 2 2 r min 2 w 2 ] ,     r min < r < R ,

Metrics