Abstract

A range of crystalline garnet multilayer structures have been fabricated via multi-beam, multi-target PLD in conjunction with a system of mechanical shutters. Structures grown consisted of alternating Gd3Ga5O12 (GGG) and Gd3Sc2Ga3O12 (GSGG) layers on Y3Al5O12 (YAG) substrates, with both simple and chirped designs. Distinct layers are observed where layer thickness is around 2 nm or greater, although some layering may also be present at a sub-unit cell level. These structures demonstrate the viability of the shutter technique as a quick, simple fabrication method for a variety of optical multilayer structures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
    [CrossRef]
  2. M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
    [CrossRef]
  3. R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
    [CrossRef]
  4. T. C. May-Smith and R. W. Eason, “Comparative growth study of garnet crystal films fabricated by pulsed laser deposition,” J. Cryst. Growth 308(2), 382–391 (2007).
    [CrossRef]
  5. T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
    [CrossRef]
  6. T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
    [CrossRef] [PubMed]
  7. S. Stepanov, “GID_sl on the web” http://sergey.gmca.aps.anl.gov/gid_sl.html
  8. M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
    [CrossRef]
  9. Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
    [CrossRef]
  10. M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
    [CrossRef]
  11. L.V. Azaroff, Elements of X-Ray Crystallography (McGraw-Hill 1968).
  12. T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

2010 (1)

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

2009 (1)

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

2008 (3)

M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
[CrossRef]

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[CrossRef]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[CrossRef] [PubMed]

2007 (2)

T. C. May-Smith and R. W. Eason, “Comparative growth study of garnet crystal films fabricated by pulsed laser deposition,” J. Cryst. Growth 308(2), 382–391 (2007).
[CrossRef]

T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
[CrossRef]

2003 (1)

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

2000 (1)

Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
[CrossRef]

1996 (1)

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Chern, M. Y.

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Craven, M. D.

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Darby, M. S. B.

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[CrossRef] [PubMed]

M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
[CrossRef]

DenBaars, S. P.

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Eason, R. W.

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[CrossRef] [PubMed]

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[CrossRef]

M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
[CrossRef]

T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
[CrossRef]

T. C. May-Smith and R. W. Eason, “Comparative growth study of garnet crystal films fabricated by pulsed laser deposition,” J. Cryst. Growth 308(2), 382–391 (2007).
[CrossRef]

Eason, R.W.

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

Fang, C. C.

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Gazia, R.

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[CrossRef]

Huang, C. Y.

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Ishibashi, Y.

Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
[CrossRef]

Liaw, J. S.

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Lin, J. G.

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Lunney, J. G.

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

May-Smith, T. C.

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogeneous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11), 1767–1780 (2008).
[CrossRef] [PubMed]

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[CrossRef]

M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
[CrossRef]

T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
[CrossRef]

T. C. May-Smith and R. W. Eason, “Comparative growth study of garnet crystal films fabricated by pulsed laser deposition,” J. Cryst. Growth 308(2), 382–391 (2007).
[CrossRef]

May-Smith, T.C.

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

Muir, A. C.

Ohashi, N.

Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
[CrossRef]

Shepherd, D. P.

T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
[CrossRef]

Sloyan, K. A.

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

Sloyan, K.A.

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

Speck, J. S.

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Tsurumi, T.

Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
[CrossRef]

Waltereit, P.

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Wu, F.

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Y. Chern, C. C. Fang, J. S. Liaw, J. G. Lin, and C. Y. Huang, “Study of ultrathin Y3Fe5O12/Gd3Ga5O12 superlattices,” Appl. Phys. Lett. 69(6), 854–856 (1996).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. S. B. Darby, T. C. May-Smith, and R. W. Eason, “Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3,” Appl. Phys., A Mater. Sci. Process. 93(2), 477–481 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

K. A. Sloyan, T. C. May-Smith, R. W. Eason, and J. G. Lunney, “The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition,” Appl. Surf. Sci. 255(22), 9066–9070 (2009).
[CrossRef]

Cryst. Growth Des. (1)

T.C. May-Smith, K.A. Sloyan, R. Gazia, and R.W. Eason, “Stress Engineering and Optimisation of Thick Garnet Crystal Films Grown by Pulsed Laser Deposition,” Manuscript submitted to Cryst. Growth Des. September 2010.

J. Cryst. Growth (2)

R. Gazia, T. C. May-Smith, and R. W. Eason, “Growth of a hybrid garnet crystal multilayer structure by combinatorial pulsed laser deposition,” J. Cryst. Growth 310(16), 3848–3853 (2008).
[CrossRef]

T. C. May-Smith and R. W. Eason, “Comparative growth study of garnet crystal films fabricated by pulsed laser deposition,” J. Cryst. Growth 308(2), 382–391 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Ishibashi, N. Ohashi, and T. Tsurumi, “Structural refinement of X-ray diffraction profile for artificial superlattices,” Jpn. J. Appl. Phys. 39(1), 186–191 (2000).
[CrossRef]

M. D. Craven, P. Waltereit, F. Wu, J. S. Speck, and S. P. DenBaars, “Characterization of a-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42(Part 2, No. 3A), 235–238 (2003).
[CrossRef]

Thin Solid Films (1)

T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Growth of a multilayer garnet crystal double-clad waveguide structure by pulsed laser deposition,” Thin Solid Films 515(20–21), 7971–7975 (2007).
[CrossRef]

Other (2)

S. Stepanov, “GID_sl on the web” http://sergey.gmca.aps.anl.gov/gid_sl.html

L.V. Azaroff, Elements of X-Ray Crystallography (McGraw-Hill 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Combinatorial PLD setup with two lasers and two targets. Shutter 1 is closed, blocking the beam path and preventing ablation, while shutter 2 is open, allowing the laser to ablate Target 2. The sequence of opening and closing of both shutters is set using custom LabView programs on a PC, via a shutter control box connected to each unit.

Fig. 2
Fig. 2

Examples of x-ray reflectivity measurements (black) and simulated fit (red)

Fig. 3
Fig. 3

High resolution logarithmic X-ray diffraction data (black) and simulation (red) for structures fabricated via alternating pulse bursts per target. The number of shots per burst on each target ranges from 5 to 5000 over the range of samples.

Fig. 4
Fig. 4

Diagram showing the number of repetitions of each layer in each component superlattice section within the compensated chirped structure. Layers of GGG and GSGG are represented by black and white areas respectively. The number of layer repetitions is chosen so that the overall thickness of each section is approximately equal (~6000 shots in total).

Fig. 5
Fig. 5

Low resolution XRD data for two chirped multilayer structures. Sample 1 (simple chirp) is shown in black, sample 2 (compensated chirp) is in grey. Spectra can be considered as a sum of those from each of the component sections, either pairs of layers of varying thickness (sample 1) or stacked superlattices of approximately the same thickness (sample 2). The peak at 29.74 is that of the underlying YAG substrate.

Fig. 6
Fig. 6

MATLAB simulations suggest that reflective structures of 90% reflectivity and above could be fabricated using 58 layers of YAG and GGG.

Tables (1)

Tables Icon

Table 1 Information about growth rates and layer quality obtained from superlattice samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = λ 2 ( sin θ n + 1 sin θ n )

Metrics