Abstract

We report periodical frequency modulation of high-order harmonic fields observed by changing the delay between the driving two-color laser fields consisting of the fundamental and its second harmonic (SH) field. The amplitude of modulation has been up to ∼0.4 eV, which is larger than the bandwidth of the fundamental field. Experimental results show that the intensity and chirp of the fundamental field can control this phenomenon. Numerical analysis by solving the time-dependent Schrödinger equation approves of these results and shows that anharmonic frequency components of the SH field have a crucial role in this phenomenon.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Oishi, M. Kaku, A. Suda, F. Kannari, and K. Midorikawa, "Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field," Opt. Express 14, 7230-7237 (2006).
    [CrossRef] [PubMed]
  2. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
    [CrossRef] [PubMed]
  3. E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
    [CrossRef] [PubMed]
  4. A. Fleischer, and N. Moiseyev, "Attosecond laser pulse synthesis using bichromatic high-order harmonic generation," Phys. Rev. A 74, 053806 (2006).
    [CrossRef]
  5. C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
    [CrossRef]
  6. H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
    [CrossRef]
  7. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
    [CrossRef] [PubMed]
  8. N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
    [CrossRef]
  9. J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
    [CrossRef]
  10. N. Ishii, A. Kosuge, T. Hayashi, T. Kanai, J. Itatani, S. Adachi, and S. Watanabe, "Quantum path selection in high-harmonic generation by a phase-locked two-color field," Opt. Express 16, 20876-20883 (2008).
    [CrossRef] [PubMed]
  11. I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
    [CrossRef]
  12. A. Amani Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, and K. Midorikawa, "Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser," Opt. Express 16, 13431-13438 (2008).
    [CrossRef] [PubMed]
  13. A. Amani Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, E. J. Takahashi, and K. Midorikawa, "Frequency modulation of high-order harmonics depending on the delay between two-color laser fields," CLEO/QELS 2010, paper JThE121.
  14. K. L. Ishikawa, "High-harmonic generation," in "Advances in Solid-State Lasers: Development and Applications," ed. by M. Grishin, INTECH, 439-464 (2010).
  15. H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
    [CrossRef]

2010

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

2009

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

2008

2006

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Y. Oishi, M. Kaku, A. Suda, F. Kannari, and K. Midorikawa, "Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field," Opt. Express 14, 7230-7237 (2006).
[CrossRef] [PubMed]

A. Fleischer, and N. Moiseyev, "Attosecond laser pulse synthesis using bichromatic high-order harmonic generation," Phys. Rev. A 74, 053806 (2006).
[CrossRef]

2005

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

1999

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Adachi, S.

Amani Eilanlou, A.

Bandulet, H. C.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Bisson, E.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Calegari, F.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Cha, Y. H.

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Chang, Z.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Chini, M.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Cho, D. J.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Comtois, D.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Corkum, P. B.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Dahlström, J. M.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

De Silvestri, S.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Dudovich, N.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Feng, X.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Fleischer, A.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

A. Fleischer, and N. Moiseyev, "Attosecond laser pulse synthesis using bichromatic high-order harmonic generation," Phys. Rev. A 74, 053806 (2006).
[CrossRef]

Fordell, T.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Frassetto, F.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Gaarde, M. B.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Gilbertson, S.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Gisselbrecht, M.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Gustafsson, E.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Hayashi, T.

Hong, K. H.

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Ishii, N.

Ishikawa, K. L.

Itatani, J.

Ivanov, M. Yu.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Johnsson, P.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Kaku, M.

Kanai, T.

Kannari, F.

Khan, S. D.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Kieffer, J. C.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Kim, C. M.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Kim, H. T.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Kim, I. J.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Klünder, K.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Kosuge, A.

L’Huillier, A.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Lan, P.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

Lee, D. G.

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Lee, G. H.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Lee, Y. S.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Leveseque, J.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Mairesse, Y.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Mansten, E.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Mashiko, H.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Mauritsson, J.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Midorikawa, K.

Moiseyev, N.

A. Fleischer, and N. Moiseyev, "Attosecond laser pulse synthesis using bichromatic high-order harmonic generation," Phys. Rev. A 74, 053806 (2006).
[CrossRef]

Mücke, O. D.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

Nabekawa, Y.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

A. Amani Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, and K. Midorikawa, "Direct amplification of terawatt sub-10-fs pulses in a CPA system of Ti:sapphire laser," Opt. Express 16, 13431-13438 (2008).
[CrossRef] [PubMed]

Nam, C. H.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Nisoli, M.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Oishi, Y.

Park, J. Y.

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

Pépin, H.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Poletto, L.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Ruchon, T.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Sansone, G.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Schafer, K. J.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

Shin, H. J.

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Smirnova, O.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Stagira, S.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Suda, A.

Swoboda, M.

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

Takahashi, E. J.

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

Takahashi, H.

Villeneuve, D. M.

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Villoresi, P.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Vozzi, C.

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

Wang, H.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Watanabe, S.

Wu, Y.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Zhao, K.

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

Nat. Phys.

N. Dudovich, O. Smirnova, J. Leveseque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, "Measuring and controlling the birth of attosecond XUV pulses," Nat. Phys. 2, 781-786 (2006).
[CrossRef]

Opt. Express

Phys. Rev. A

J. M. Dahlström, T. Fordell, E. Mansten, T. Ruchon, M. Swoboda, K. Klünder, M. Gisselbrecht, A. L’Huillier, and J. Mauritsson, "Atomic and macroscopic measurements of attosecond pulse trains," Phys. Rev. A 80, 033836 (2009).
[CrossRef]

A. Fleischer, and N. Moiseyev, "Attosecond laser pulse synthesis using bichromatic high-order harmonic generation," Phys. Rev. A 74, 053806 (2006).
[CrossRef]

C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, "Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme," Phys. Rev. A 79, 033842 (2009).
[CrossRef]

H. C. Bandulet, D. Comtois, E. Bisson, A. Fleischer, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, "Gating attosecond pulse train generation using multicolor laser fields," Phys. Rev. A 81, 013803 (2010).
[CrossRef]

Phys. Rev. Lett.

J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, "Attosecond pulse trains generated using two color laser fields," Phys. Rev. Lett. 97, 013001 (2006).
[CrossRef] [PubMed]

X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, "Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers," Phys. Rev. Lett. 103, 183901 (2009).
[CrossRef] [PubMed]

E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, "Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse," Phys. Rev. Lett. 104, 233901 (2010).
[CrossRef] [PubMed]

I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, "Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
[CrossRef]

H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong, and C. H. Nam, "Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field," Phys. Rev. Lett. 83, 2544-2547 (1999).
[CrossRef]

Other

A. Amani Eilanlou, Y. Nabekawa, K. L. Ishikawa, H. Takahashi, E. J. Takahashi, and K. Midorikawa, "Frequency modulation of high-order harmonics depending on the delay between two-color laser fields," CLEO/QELS 2010, paper JThE121.

K. L. Ishikawa, "High-harmonic generation," in "Advances in Solid-State Lasers: Development and Applications," ed. by M. Grishin, INTECH, 439-464 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Spectra and pulse shapes of the driving two-color laser fields. (a) Spectrum of the fundamental field (solid curve) together with the spectral phase after control by the LC-SLM (dashed curve). (b) The solid curve shows the spectrum of the SH field. The dotted blue curve in the inset shows the Fourier-limit temporal profile (FWHM 20 fs) of the SH field compared to the reconstructed temporal profile of the fundamental field with FWHM of 15.2 fs (solid red curve).

Fig. 2
Fig. 2

Schematic of the two-color interferometer implemented to synthesize the broadband two-color laser field having an adjustable beam spot size at the focus.

Fig. 3
Fig. 3

Schematic of the HH generation and measurement setup.

Fig. 4
Fig. 4

HH spectrum generated by the fundamental field alone (dashed curve). The solid curve shows the spectrum generated by the two-color laser field.

Fig. 5
Fig. 5

XUV spectra collection by scanning the delay between the two-color laser fields and the first observation of frequency modulation of HH fields. (a) Spectrogram of HH fields. The HH spectra are scaled with the optical frequency of the fundamental field. The delay is normalized with the optical period of the fundamental laser field (Tf). (b) Peak frequency of the 22nd harmonic field against the delay, which is extracted from panel-(a) by calculating the frequency of the HH field when its intensity reaches a maximum. All of the spectrograms in the following figures are depicted in the same manner.

Fig. 8
Fig. 8

Numerical analysis results to verify the effects of the wavelength of the SH field and the intensity and chirp of the fundamental field on the frequency modulation of HH fields. (a) Calculated spectrogram by SH wavelength of 400 nm added to Fourier-limit fundamental field. (b) Calculated spectrogram by SH wavelength of 417 nm added to the same fundamental field. (c) Same conditions as panel-(b), but with a chirped fundamental field (GDD=−30 fs2). The introduction of the GDD results in 17.7 fs pulse duration, for which the peak intensity of the fundamental field is kept unchanged. (d) Same conditions as panel-(c), but with a higher fundamental pulse intensity (1.5 × 1014 W/cm2). (e) Same conditions as panel-(d), but with SH wavelength of 400 nm. (f) Effects of minus chirp on the frequency modulation of the 30th harmonic fields of panel-(c) (diamonds with solid curve) and panel-(b) shown by the diamonds with dashed curve. (g) Effects of intensity on the frequency modulation of the 18th harmonic fields of panel-(d) (diamonds with solid curve) and panel-(c) shown by the diamonds with dashed curve.

Fig. 6
Fig. 6

Spectrograms to investigate how the intensity of the fundamental field affects the frequency modulation of the HH fields. (a) Spectrogram obtained by a high-energy fundamental field (fundamental 5.7 mJ and SH 85 μJ). (b) Spectrogram obtained by a low-energy fundamental field (fundamental 4.2 mJ and SH 60 μJ). (c) Peak frequency of the 20th harmonic field extracted from panel-(a) shown by the diamonds with solid curve and that of panel-(b) (diamonds with dashed curve).

Fig. 7
Fig. 7

Spectrograms to investigate how the chirp of the fundamental field affects the frequency modulation of the HH fields. (a) Spectrogram obtained by a two-color laser field in which the fundamental field has minus chirp (GDD∼−125 fs2). (b) Spectrogram obtained by a two-color laser field in which the fundamental field is nearly Fourier limited. (c) Peak frequency of the 24th harmonic field extracted from panel-(a) shown by the diamonds with solid curve and that of panel-(b) (diamonds with dashed curve).

Fig. 9
Fig. 9

Blue shift of the odd-order harmonic fields and energy level diagram showing generation of even-order harmonic fields by two in-situ processes. (a) Blue shift of the odd-order harmonic fields generated by a high-intensity fundamental field alone, expressed using photon energy shifts of the peak frequencies. Experimental data shown by the solid circles are those obtained under conditions of Fig. 6(a), showing an hδ ν of 0.055 eV (slope of the linear fit shown by the dashed line). (b) Photon energy of the even-order harmonic fields generated by the in-situ processes (i) and (ii), expressed in units of the photon energy of the fundamental field (). For clarity in the figure, δ νSH/ν is denoted by β, δ ν/ν by α, and q/ν by p. This results in even-order harmonic fields with energy of 2n+2(n – 1) αpβ and 2n + 2(n + 1) αp +β respectively, having energy difference of 4α+ 2β, which is equal to h(4δ ν+ 2δ νSH).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 2 ( t , ϕ ) = S 1 ( t ) σ ( t , ϕ ) .
cos [ ω 2 ( t + π / ω ) + ϕ ] = cos [ ω 2 t + { ϕ ( π / ω ) δ ω SH } ] .
σ ( t + π / ω , ϕ ) = σ ( t , ϕ ( π / ω ) δ ω SH ( σ ( t , ϕ ) σ ϕ ( π ω δ ω SH ) ) .
σ ϕ ( π ω δ ω SH ) π ω δ ω HH = 0 .
δ ω HH = σ ϕ δ ω SH .
ν 2 n = ν 2 ( n 1 ) + ν SH = [ 2 ( n 1 ) ( ν + δ ν ) q ] + { 2 ν δ ν SH } = 2 n ν + 2 ( n 1 ) δ ν q δ ν SH ,
ν 2 n = ν 2 ( n + 1 ) ν SH = [ 2 ( n + 1 ) ( ν + δ ν ) q ] { 2 ν δ ν SH } = 2 n ν + 2 ( n + 1 ) δ ν q + δ ν SH .
ν 2 n ν 2 n = 4 δ ν + 2 δ ν SH .

Metrics