Abstract

The aim of this paper is to investigate the properties of the inhomogeneities that give rise to light scattering in polymer optical fibers (POFs). We perform several measurements in two commercial POFs of identical characteristics: these measurements, based on the side-illumination technique, consist in the detection of the total amount of scattered light guided along a POF sample under different launching conditions and in the acquisition of the corresponding near- and far-field patterns. We carry out complementary computer simulations considering inhomogeneities of different sizes at different positions inside the POF. The comparison of these simulated results with the experimental measurements will provide us with valuable information about the size and placement of the most influential inhomogeneities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, Berlin, 2008), 2nd ed.
  2. D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in 13th international plastic optical fibres conference 2004: Proceedings, (Nuremberg (Germany), 2004), pp. 237-244.
  3. T. Kaino, "Polymer optical fibers," in Polymers for lightwave and integrated optics, L. A. Hornak, ed. (Marcel Dekker, Inc., New York, 1992), chap. 1.
  4. J. Zubia, and J. Arrue, "Plastic optical fibers: An introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001), http://dx.doi.org/10.1006/ofte.2000.0355.
    [CrossRef]
  5. H. C. van de Hulst, Light scattering by small particles (Dover Publications, Inc., New York, 1981).
  6. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983).
  7. M. Born, and E. Wolf, Principles of optics (Pergamon Press, New York, 1990), 6th ed.
  8. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  9. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
  10. Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
    [CrossRef]
  11. Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
    [CrossRef]
  12. H. Poisel, A. Hager, V. Levin, and K.-F. Klein, "Lateral coupling to polymer optical fibres," in 7th international plastic optical fibres conference 1998: Proceedings, (Berlin (Germany), 1998), pp. 114-116.
  13. C.-A. Bunge, R. Kruglov, and H. Poisel, "Rayleigh and Mie scattering in polymer optical fibers," J. Lightwave Technol. 24, 3137-3146 (2006), http://dx.doi.org/10.1109/JLT.2006.878077.
    [CrossRef]
  14. M. A. Illarramendi, J. Zubia, L. Bazzana, G. Durana, G. Aldabaldetreku, and J. R. Sarasua, "Spectroscopic Characterization of Plastic Optical Fibers Doped with Fluorene Oligomers," J. Lightwave Technol. 27, 3220-3226 (2009), http://dx.doi.org/10.1109/JLT.2008.2010274.
    [CrossRef]
  15. I. Bikandi, M. A. Illarramendi, J. Zubia, G. Aldabaldetreku, G. Durana, and L. Bazzana, "Dependence of fluorescence in POFs doped with conjugated polymers on launching conditions," in POF 2009 Conference Proceedings (CD-ROM), (Sydney (Australia), 2009). Paper no. 32, http://igigroup.net/osc3/index.php?cPath=23.
  16. Toray Industries Inc, "Raytela Plastic Optical Fiber," http://www.toray.co.jp/english/raytela/ index.html.
  17. Mitsubishi Rayon Co, Ltd., "Super ESKA Plastic Optical Fiber," http://www.pofeska.com/.
  18. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (Taylor and Francis, Boca Raton, 2007).
  19. G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
    [CrossRef]
  20. A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
    [CrossRef] [PubMed]
  21. S. Savović, and A. Djordjevich, "Mode coupling in strained and unstrained step-index plastic optical fibers," Appl. Opt. 45, 6775-6780 (2006), http://dx.doi.org/10.1364/AO.45.006775.
    [CrossRef]
  22. M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
    [CrossRef]
  23. K. K. Hamamatsu Photonics, "LEPAS-12 optical beam measurement system," http://sales. hamamatsu.com/en/products/system-division/laser-fiber-optic-measurement/ beam-analysis.php.
  24. G. Aldabaldetreku, J. Zubia, G. Durana, and J. Arrue, "Numerical implementation of the ray-tracing method in the propagation of light through multimode optical fibres," in POF Modelling: Theory, Measurement and Application, C.-A. Bunge and H. Poisel, eds. (Books on Demand GmbH, Norderstedt (Germany), 2007), pp. 25-48.
  25. I. Bikandi, M. A. Illarramendi, J. Zubia, G. Aldabaldetreku, G. Durana, and L. Bazzana, "Analysis of light scattering in plastic optical fibres by side excitation technique: Theory and experimentation," in POF 2009 Conference Proceedings (CD-ROM), (Sydney (Australia), 2009). Paper no. 35, http://igigroup.net/osc3/index.php?cPath=23.
  26. G. Aldabaldetreku, J. Zubia, G. Durana, and J. Arrue, "Power transmission coefficients for multi-step index optical fibres," Opt. Express 14, 1413-1429 (2006), http://dx.doi.org/10.1364/OE.14.001413.
    [CrossRef] [PubMed]
  27. J. D. Love, and C. Winkler, "A universal tunneling coefficient for step- and graded-index multimode fibres," Opt. Quantum Electron. 10, 341-351 (1978), http://dx.doi.org/10.1007/BF00620122.
    [CrossRef]

2009 (1)

2006 (3)

2004 (1)

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

2001 (1)

J. Zubia, and J. Arrue, "Plastic optical fibers: An introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001), http://dx.doi.org/10.1006/ofte.2000.0355.
[CrossRef]

1998 (1)

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
[CrossRef] [PubMed]

1997 (1)

G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
[CrossRef]

1992 (1)

Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
[CrossRef]

1989 (1)

Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
[CrossRef]

1978 (1)

J. D. Love, and C. Winkler, "A universal tunneling coefficient for step- and graded-index multimode fibres," Opt. Quantum Electron. 10, 341-351 (1978), http://dx.doi.org/10.1007/BF00620122.
[CrossRef]

1972 (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Aldabaldetreku, G.

Arrue, J.

Bair, H. E.

Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
[CrossRef]

Bazzana, L.

Bunge, C.-A.

Casao, J. A.

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

Djordjevich, A.

Durana, G.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
[CrossRef] [PubMed]

Garcés, I.

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

Garito, A. F.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
[CrossRef] [PubMed]

G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
[CrossRef]

Gloge, D.

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Illarramendi, M. A.

Jiang, G.

G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
[CrossRef]

Koike, Y.

Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
[CrossRef]

Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
[CrossRef]

Kruglov, R.

Losada, M. A.

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

Love, J. D.

J. D. Love, and C. Winkler, "A universal tunneling coefficient for step- and graded-index multimode fibres," Opt. Quantum Electron. 10, 341-351 (1978), http://dx.doi.org/10.1007/BF00620122.
[CrossRef]

Mateo, J.

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

Matsuoka, S.

Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
[CrossRef]

Ohtsuka, Y.

Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
[CrossRef]

Pérez-Vela, P.

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

Poisel, H.

Sarasua, J. R.

Savovic, S.

Shi, R. F.

G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
[CrossRef]

Tanio, N.

Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
[CrossRef]

Wang, J.

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
[CrossRef] [PubMed]

Winkler, C.

J. D. Love, and C. Winkler, "A universal tunneling coefficient for step- and graded-index multimode fibres," Opt. Quantum Electron. 10, 341-351 (1978), http://dx.doi.org/10.1007/BF00620122.
[CrossRef]

Zubia, J.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEEE Photon. Technol. Lett. (2)

G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium mode distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9, 1128-1131 (1997), http://dx.doi.org/10.1109/68.605524.
[CrossRef]

M. A. Losada, J. Mateo, I. Garcés, J. Zubia, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibers," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004), http://dx.doi.org/10.1109/LPT.2004.826780.
[CrossRef]

J. Lightwave Technol. (2)

Macromolecules (2)

Y. Koike, N. Tanio, and Y. Ohtsuka, "Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses," Macromolecules 22, 1367-1373 (1989), http://dx.doi.org/10.1021/ma00193a060.
[CrossRef]

Y. Koike, S. Matsuoka, and H. E. Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses," Macromolecules 25, 4807-4815 (1992), http://dx.doi.org/10.1021/ma00044a049.
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Zubia, and J. Arrue, "Plastic optical fibers: An introduction to their technological processes and applications," Opt. Fiber Technol. 7, 101-140 (2001), http://dx.doi.org/10.1006/ofte.2000.0355.
[CrossRef]

Opt. Quantum Electron. (1)

J. D. Love, and C. Winkler, "A universal tunneling coefficient for step- and graded-index multimode fibres," Opt. Quantum Electron. 10, 341-351 (1978), http://dx.doi.org/10.1007/BF00620122.
[CrossRef]

Science (1)

A. F. Garito, J. Wang, and R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998), http://dx.doi.org/10.1126/science.281.5379.962.
[CrossRef] [PubMed]

Other (15)

H. Poisel, A. Hager, V. Levin, and K.-F. Klein, "Lateral coupling to polymer optical fibres," in 7th international plastic optical fibres conference 1998: Proceedings, (Berlin (Germany), 1998), pp. 114-116.

I. Bikandi, M. A. Illarramendi, J. Zubia, G. Aldabaldetreku, G. Durana, and L. Bazzana, "Dependence of fluorescence in POFs doped with conjugated polymers on launching conditions," in POF 2009 Conference Proceedings (CD-ROM), (Sydney (Australia), 2009). Paper no. 32, http://igigroup.net/osc3/index.php?cPath=23.

Toray Industries Inc, "Raytela Plastic Optical Fiber," http://www.toray.co.jp/english/raytela/ index.html.

Mitsubishi Rayon Co, Ltd., "Super ESKA Plastic Optical Fiber," http://www.pofeska.com/.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (Taylor and Francis, Boca Raton, 2007).

H. C. van de Hulst, Light scattering by small particles (Dover Publications, Inc., New York, 1981).

C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983).

M. Born, and E. Wolf, Principles of optics (Pergamon Press, New York, 1990), 6th ed.

A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, Berlin, 2008), 2nd ed.

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in 13th international plastic optical fibres conference 2004: Proceedings, (Nuremberg (Germany), 2004), pp. 237-244.

T. Kaino, "Polymer optical fibers," in Polymers for lightwave and integrated optics, L. A. Hornak, ed. (Marcel Dekker, Inc., New York, 1992), chap. 1.

K. K. Hamamatsu Photonics, "LEPAS-12 optical beam measurement system," http://sales. hamamatsu.com/en/products/system-division/laser-fiber-optic-measurement/ beam-analysis.php.

G. Aldabaldetreku, J. Zubia, G. Durana, and J. Arrue, "Numerical implementation of the ray-tracing method in the propagation of light through multimode optical fibres," in POF Modelling: Theory, Measurement and Application, C.-A. Bunge and H. Poisel, eds. (Books on Demand GmbH, Norderstedt (Germany), 2007), pp. 25-48.

I. Bikandi, M. A. Illarramendi, J. Zubia, G. Aldabaldetreku, G. Durana, and L. Bazzana, "Analysis of light scattering in plastic optical fibres by side excitation technique: Theory and experimentation," in POF 2009 Conference Proceedings (CD-ROM), (Sydney (Australia), 2009). Paper no. 35, http://igigroup.net/osc3/index.php?cPath=23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental set-up used to measure the scattered intensity in POFs. Legend: POL: linear polarizer; L1: plano-concave lens (f′ = −40 mm); L2: plano-convex lens (f′ = +200 mm); L3: symmetric-convex lens (f′ = +150 mm); L4: symmetric-convex lens (f′ = +50 mm); BS: beam splitter; NDF: absorptive neutral densitive filter; CAM: frame grabber; OBJ: 0.1–NA objective; xy POS: xy–micropositioner; RS: rotation stage; RPD: reference photodetector (with attenuator); RMM: reference multimeter; SPD: signal photodetector (without attenuator); SMM: signal multimeter.

Fig. 2
Fig. 2

Geometrical arrangement of the POF relative to the incident beam for each measurement method.

Fig. 3
Fig. 3

Still taken from the frame grabber which shows at its center the incident spot on the lateral surface of the SK POF (at y = 0 μm). The dashed lines superimposed on the photograph delimit the upper and lower boundaries of the fiber.

Fig. 4
Fig. 4

Experimental results for lateral scan. Step size is of 50 μm between −400 μm and + 400 μm, and it is further reduced to 25 μm within intervals [−600 μm, −400 μm] and [+ 400 μm, +600 μm] in order to obtain a more detailed measurement of the abrupt change in intensity around y = ±ρcore (ρcore = ϕcore/2). The measured intensity I is divided by the intensity I0 obtained by the RPD reference photodiode (see also Fig. 1).

Fig. 5
Fig. 5

Experimental results for angular scan. Step size is of 0.5° between 45° and +45°. The measured intensity I is divided by the intensity I0 obtained by the RPD reference photodiode (see also Fig. 1).

Fig. 6
Fig. 6

Effect of the finite spot size in the lateral scan. The area illuminated by the incident laser beam on the lateral surface of the POF depends on the y–position of the point of incidence. At y = +ρcore the projected area is larger than at y = 0 μm.

Fig. 7
Fig. 7

Experimental near- and far-field patterns of the PGU POF for different lateral y–positions. Measurements carried out at α = 0° and using horizontal polarization. The color scale denotes intensity counts (notice that the maximum value of the color scale in (c) has been divided by four, i.e. (7 × 104)/4 = 1.75 × 104).

Fig. 8
Fig. 8

Experimental near- and far-field patterns of the PGU POF for different launching angles α. Measurements carried out at y = 0 μm and using horizontal polarization. The color scale denotes intensity counts (notice the variation of the maximum value of the color scale on each near-field pattern; it has been reduced to (7 × 104)/4 = 1.75 × 104 in (a) and to (7 × 104)/2 = 3.5 × 104 in (c)).

Fig. 9
Fig. 9

Experimental near- and far-field patterns of the SK POF for different launching angles α. Measurements carried out at y = 0 μm and using vertical polarization. The color scale denotes intensity counts (notice the variation of the maximum value of the color scale on each near-field pattern; it has been reduced to (7 × 104)/4 = 1.75 × 104 in (a) and to (7 × 104)/2 = 3.5 × 104 in (c)).

Fig. 10
Fig. 10

Distribution of the scattered intensity for two different sizes of the scattering sphere and for each polarization. The scattering sphere is placed at the core/cladding interface (identical results are obtained for a scattering sphere in the core region). The color scale on each subfigure is related to the values shown in the corresponding axes [navy blue corresponds to the lowest intensity value, i.e. 0.0, and red to the highest intensity value, i.e. 13.5 in (a) and (b), or 2.9 × 10−7 in (c) and (d)]. A sketch showing the actual orientation of the fiber and the direction of the incident beam is superimposed on each plot (notice that the size of the distribution of the scattered intensity is not related to the size of the fiber). The launching conditions for the incident beam are y = 0 μm and α = 0°.

Fig. 11
Fig. 11

Numerical results for lateral scan. Step size is of 10 μm between −500 μm and +500 μm. The numerical intensity I is divided by a constant reference value I0. Legend: CC: scattering sphere placed at the core/cladding interface (at r = ρcore); CR: scattering sphere in the core region (r < ρcore). H: horizontal polarization; V: vertical polarization.

Fig. 12
Fig. 12

Numerical results for angular scan. Step size is of 0.5° between −45° and +45°. The numerical intensity I is divided by a constant reference value I0. Legend: CC: scattering sphere placed at the core/cladding interface (at r = ρcore); CR: scattering sphere in the core region (r < ρcore). H: horizontal polarization; V: vertical polarization.

Fig. 13
Fig. 13

Numerical near- and far-field patterns for different lateral y–positions at α = 0° and using horizontal polarization (H). Simulations carried out for scattering spheres of different diameters (ϕscatt = 2000 nm, 200 nm, and 10 nm) and placed either at the core/cladding interface (denoted by CC) or in the core region (denoted by CR). The color scale denotes intensity counts (notice the variation of the maximum value of the color scale as a function of the size of the scattering sphere).

Fig. 14
Fig. 14

Numerical near- and far-field patterns for different launching angles α at y = 0 μm and using vertical polarization (V). Simulations carried out for scattering spheres of different diameters (ϕscatt = 2000 nm, 200 nm, and 10 nm) and placed either at the core/cladding interface (denoted by CC) or in the core region (denoted by CR). The color scale denotes intensity counts (notice the variation of the maximum value of the color scale as a function of the size of the scattering sphere).

Tables (1)

Tables Icon

Table 1 Specifications of the investigated POFs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x = π ϕ scatt λ n sr ,

Metrics