Abstract

We report on the modal competition mediated angular dispersion by heterogeneously coupled plasmonic waveguides. By varying the wavelength of the excitation, the surface waves propagate alongside the upper and lower interfaces can be manipulated in coupled, decoupled, and cutoff regimes. Depending on the coupling states, the output beam can be steered between +15° and −17° for wavelength from λ = 695nm to λ = 675nm. The maximum achieved angular dispersion can be as large as 2.1°/nm. This finding may revolutionize current design concept of spectrometers, providing a significant way to scale down the form factor further into nano-size.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
    [CrossRef] [PubMed]
  2. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  3. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15(15), 9541–9546 (2007).
    [CrossRef] [PubMed]
  4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  5. J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14(21), 10000–10013 (2006).
    [CrossRef] [PubMed]
  6. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  7. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
    [CrossRef] [PubMed]
  8. B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
    [CrossRef]
  9. K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11, 075003 (2009).
    [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  12. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
    [CrossRef]
  13. M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves,” Opt. Express 18(9), 8800–8805 (2010).
    [CrossRef] [PubMed]
  14. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  15. K. T. Wu, and Y. D. Yao, Wu, and H. Z. Liu, Proc. Mag. Conference, CS-14 (2003).
  16. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).
  17. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
    [CrossRef]

2010 (2)

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton waves,” Opt. Express 18(9), 8800–8805 (2010).
[CrossRef] [PubMed]

2009 (1)

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11, 075003 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[CrossRef] [PubMed]

J. Wuenschell and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14(21), 10000–10013 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2004 (1)

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

2003 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

1985 (1)

1974 (1)

Adams, D. C.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Alexander, R. W.

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Bell, R. J.

Brueck, S. R. J.

Chen, J.

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Deng, Y.

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Fan, S.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Jiao, X.

Kaminow, I. P.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kim, H. K.

Kim, K. Y.

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11, 075003 (2009).
[CrossRef]

Koo, S.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kumar, M. S.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Long, L. L.

Malloy, K. J.

Mammel, W. L.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Min, C.

Ming, H.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Ordal, M. A.

Park, N.

Piao, X.

Podolskiy, V. A.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Querry, M. R.

Ribaudo, T.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[CrossRef] [PubMed]

Smolyakov, G. A.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Thongrattanasiri, S.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

Wang, P.

Wasserman, D.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Weber, H. P.

Wuenschell, J.

Yu, S.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, “Plasmonic mid-infrared beam steering,” Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. Y. Kim, “Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics,” J. Opt. A, Pure Appl. Opt. 11, 075003 (2009).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[CrossRef] [PubMed]

Science (2)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (2)

K. T. Wu, and Y. D. Yao, Wu, and H. Z. Liu, Proc. Mag. Conference, CS-14 (2003).

A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic diagram of the heterogeneously coupled plasmonic structure.

Fig. 2
Fig. 2

The comparison of the modal profiles obtained by CE and CMEs. (a-b) for FOM>>1 and (c-f) for FOM<<1.

Fig. 3
Fig. 3

(a) The dispersion relations obtained by CE and FDTD methods. (b) Modal evolution with the excitation wavelength.

Fig. 4
Fig. 4

Deflection angle as a function of the excitation wavelength. The inset shows the dominant mode and the direction of the output beam.

Fig. 5
Fig. 5

Intensity distributions for (a) λ=675nm, (b) λ=685nm, and (c) λ=695nm.

Fig. 6
Fig. 6

Time-averaged Poynting vectors for λ=675nm, λ=685nm, and λ=695nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( ε d 2 κ 2 + ε m 1 γ 1 ε m 2 γ 2 ) tan h ( κ d ) = ε d κ ( ε m 1 γ 1 + ε m 2 γ 2 )
a 1 ( z ) = [ a 1 ( 0 ) ( 1 2 + β 2 β 1 4 β 0 ) + a 2 ( 0 ) κ 12 2 j β 0 ] e j ( β 0 β 1 + β 2 2 ) z + [ a 1 ( 0 ) ( 1 2 β 2 β 1 4 β 0 ) a 2 ( 0 ) κ 12 2 j β 0 ] e j ( β 0 + β 1 + β 2 2 ) z
a 2 ( z ) = [ a 1 ( 0 ) κ 21 2 j β 0 + a 2 ( 0 ) ( 1 2 + β 1 β 2 4 β 0 ) ] e j ( β 0 β 1 + β 2 2 ) z + [ a 1 ( 0 ) κ 21 2 j β 0 + a 2 ( 0 ) ( 1 2 + β 1 β 2 4 β 0 ) ] e j ( β 0 + β 1 + β 2 2 ) z

Metrics