Abstract

Quantum dot (QD) nanoclusters were formed using oppositely charged colloidal CdTe QDs, of two different sizes, mixed in aqueous solutions. The photoluminescence (PL) spectra and time-resolved PL decays show signatures of Förster resonant energy transfer (FRET) from the donor QDs to the acceptor QD in the nanoclusters. A concentration dependence of the donor QD lifetime is observed in mixed solutions with a donor: acceptor ratio greater than 1:1. The concentration dependent time-resolved PL data indicate different regimes of cluster formation, with evidence for donor-to-donor FRET in the larger donor-acceptor nanoclusters and evidence for the formation of all-donor clusters in mixed solutions with high donor concentrations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
    [CrossRef] [PubMed]
  2. T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
    [CrossRef]
  3. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik 437(2), 55–75 (1948).
    [CrossRef]
  4. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
    [CrossRef]
  5. E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
    [CrossRef]
  6. M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
    [CrossRef]
  7. D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
    [CrossRef] [PubMed]
  8. I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
    [CrossRef]
  9. P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
    [CrossRef] [PubMed]
  10. T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
    [CrossRef]
  11. E. Mutlugun, O. Samarskaya, T. Ozel, N. Cicek, N. Gaponik, A. Eychmüller, and H. V. Demir, “Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas,” Opt. Express 18(10), 10720–10730 (2010).
    [CrossRef] [PubMed]
  12. R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
    [CrossRef]
  13. R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
    [CrossRef]
  14. S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
    [CrossRef]
  15. Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
    [CrossRef]
  16. M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
    [CrossRef]

2010

E. Mutlugun, O. Samarskaya, T. Ozel, N. Cicek, N. Gaponik, A. Eychmüller, and H. V. Demir, “Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas,” Opt. Express 18(10), 10720–10730 (2010).
[CrossRef] [PubMed]

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

2009

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

2008

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

2006

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[CrossRef]

2005

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

2004

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

2003

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

1948

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik 437(2), 55–75 (1948).
[CrossRef]

Alphandery, E.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Amirav, L.

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Artemyev, M.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Baranov, A. V.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Bawendi, M. G.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Bradley, A. L.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Byrne, S. J.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

Chen, W.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

Chen, W.-Y.

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

Cicek, N.

Clapp, A. R.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Demir, H. V.

Deschamps, J. R.

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

Donegan, J. F.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Eychmüller, A.

E. Mutlugun, O. Samarskaya, T. Ozel, N. Cicek, N. Gaponik, A. Eychmüller, and H. V. Demir, “Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas,” Opt. Express 18(10), 10720–10730 (2010).
[CrossRef] [PubMed]

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Feldmann, J.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Fisher, B.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Förster, T.

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik 437(2), 55–75 (1948).
[CrossRef]

Franzl, T.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Gaponik, N.

E. Mutlugun, O. Samarskaya, T. Ozel, N. Cicek, N. Gaponik, A. Eychmüller, and H. V. Demir, “Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas,” Opt. Express 18(10), 10720–10730 (2010).
[CrossRef] [PubMed]

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Gerard, V. A.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

Goldman, E. R.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Gun’ko, Y. K.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

Gun'ko, Y. K.

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

Hilhorst, J.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

Höhl, C.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

Jung, J.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Klar, T. A.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Kotov, N. A.

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

Lifshitz, E.

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Lunz, M.

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

Maslov, V. G.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Mattoussi, H.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Mauro, J. M.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Mayilo, S.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

Medintz, I. L.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Melinger, J. S.

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

Mutlugun, E.

Mutschler, T.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Nabiev, I.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Nair, G.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Nocera, D. G.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Osovsky, R.

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Ozel, T.

Ozturk, B.

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

Pluot, M.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Pons, T.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Rakovich, Y.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Rogach, A. L.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Samarskaya, O.

Schietinger, S.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

Shavel, A.

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Snee, P. T.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Somers, R. C.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Stsiapura, V.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Sukhanova, A.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Susha, A. S.

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

Sykora, M.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Tang, Z.

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

Van Orden, A.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Walsh, L. M.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Wang, Y.

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

Wargnier, R.

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Weller, H.

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Willard, D. M.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Yu, M.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Zimmer, J. P.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

I. L. Medintz, A. R. Clapp, J. S. Melinger, J. R. Deschamps, and H. Mattoussi, “A reagentless biosensing assembly based on quantum dot-donor Förster resonance energy transfer,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2450–2455 (2005).
[CrossRef]

Anal. Bioanal. Chem.

D. M. Willard, T. Mutschler, M. Yu, J. Jung, and A. Van Orden, “Directing energy flow through quantum dots: towards nanoscale sensing,” Anal. Bioanal. Chem. 384(3), 564–571 (2006).
[CrossRef] [PubMed]

Annalen der Physik

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik 437(2), 55–75 (1948).
[CrossRef]

Chem. Phys. Lett.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

ChemPhysChem

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[CrossRef]

J. Am. Chem. Soc.

P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, “A ratiometric CdSe/ZnS nanocrystal pH sensor,” J. Am. Chem. Soc. 128(41), 13320–13321 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B

R. Osovsky, A. Shavel, N. Gaponik, L. Amirav, A. Eychmüller, H. Weller, and E. Lifshitz, “Electrostatic and covalent interactions in CdTe nanocrystalline assemblies,” J. Phys. Chem. B 109(43), 20244–20250 (2005).
[CrossRef]

Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, “Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains,” J. Phys. Chem. B 108(22), 6927–6931 (2004).
[CrossRef]

J. Phys. Chem. C

S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, and J. Feldmann, “Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions,” J. Phys. Chem. C 112(37), 14589–14594 (2008).
[CrossRef]

M. Lunz, A. L. Bradley, W.-Y. Chen, and Y. K. Gunʼko, “Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory,” J. Phys. Chem. C 113(8), 3084–3088 (2009).
[CrossRef]

Nano Lett.

T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, and J. Feldmann, “Exciton recycling in graded gap nanocrystal structures,” Nano Lett. 4(9), 1599–1603 (2004).
[CrossRef]

R. Wargnier, A. V. Baranov, V. G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, and I. Nabiev, “Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies,” Nano Lett. 4(3), 451–457 (2004).
[CrossRef]

Nat. Mater.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

M. Lunz, A. L. Bradley, W. Chen, V. A. Gerard, S. J. Byrne, and Y. K. Gun’ko, “Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers,” Phys. Rev. B 81(20), 205316 (2010).
[CrossRef]

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Photoluminescence (PL) (solid line, left-hand axis) and absorption (dotted line, right-hand axis) spectra of the pure donor TGA-QDs and the pure acceptor cys-QDs in aqueous solutions. PL (dashed line) spectrum of a mixed solution, ratio 1.3:1, of TGA-QDs and cys-QDs at the same concentrations as in the respective pure solutions. (b)Time resolved PL (TRPL) measurements of the donor QDs in a pure solution (dotted line) and in mixed solution (solid line), recorded using a filter centred at 500 nm. (c) TRPL measurements of the acceptor QDs in a pure solution (dashed line) and in mixed solution (solid line), recorded using a filter centred at 700 nm.

Fig. 3
Fig. 3

(a) The average donor lifetime (LT) as a function of the number of the number of donor QDs per acceptor QD in mixed solutions. The average lifetime for a pure donor QD solution is 14ns. The measured PL decays at four donor:acceptor ratios are shown in the inset. (b) The average lifetime for TGA-QD solutions as a function of cys-HCl volume. Inset: Measured (squares) and calculated (line) lifetime as a function of TGA-QD concentration in the LbL-deposited monolayers.

Fig. 2
Fig. 2

Left-hand axis: PL quenching of the donor TGA-QD integrated time resolved photoluminescence (TRPL) as a function of the ratio of the number of donor QDs to acceptor QDs. Right-hand axis: PL enhancement of the acceptor cys-QD integrated TRPL donor: acceptor ratio.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 1 exp ( t / τ 1 ) + I 2 exp ( t / τ 2 )
τ a v = I 1 τ 1 2 + I 2 τ 2 2 I 1 τ 1 + I 2 τ 2 .

Metrics