Abstract

We propose and theoretically demonstrate that chalcogenide (As2Se3) waveguide is a more energy efficient platform for Raman amplification and lasing than silicon for optical interconnect applications. In spite of its smaller Raman gain, ultrahigh maximum conversion efficiency of 40%, seven times better than that of silicon Raman laser, is obtained. 33% lasing threshold reduction to 299mW is simultaneously observed, together with wider linear region. A figure-of-merit (FOM) factor has been established for direct comparison between As2Se3 and silicon waveguide Raman laser. It is found that As2Se3 is superior in terms of energy consumption and device miniaturization capability. Further threshold reduction to 100mW is achieved by optimizing Stokes end-facet reflectivity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-23-5703 .
    [CrossRef] [PubMed]
  2. A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
    [CrossRef]
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  4. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-15-15-9205 .
    [CrossRef] [PubMed]
  5. V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-22-10371 .
    [CrossRef] [PubMed]
  6. F. Luan, M. D. Pelusi, M. R. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-17-5-3514 .
    [CrossRef] [PubMed]
  7. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
    [CrossRef]
  8. RR. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146 (2004).
    [CrossRef]
  9. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-22-18524 .
    [CrossRef] [PubMed]
  10. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-24-11702 .
    [CrossRef] [PubMed]
  11. P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11(24), 3248–3253 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-24-3248 .
    [CrossRef] [PubMed]
  12. N. Ponnampalam, R. Decorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12(25), 6270–6277 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-25-6270 .
    [CrossRef] [PubMed]
  13. Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
    [CrossRef]
  14. S. Madden, A. Prasad, R. Wang, D. Bulla, and B. Luther-Davies, “Highly nonlinear Ge11.5As24Se64.5 chalcogenide glass waveguides” 2009 35th European Conference on Optical Communication (ECOC), art. no. 5287363.
  15. J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000).
    [CrossRef]
  16. K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-21-8634 .
    [CrossRef] [PubMed]

2010 (1)

Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2006 (4)

2005 (2)

2004 (3)

2003 (1)

2000 (1)

J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000).
[CrossRef]

Aggarwal, I.

Aggarwal, I. D.

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[CrossRef]

Baker, N. J.

Brawley, G.

Brinkmeyer, E.

Carlie, N.

Choi, D. Y.

Cohen, D.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Couzi, M.

Decorby, R.

Delfyett, P.

Dwivedi, P.

Eggleton, B. J.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Finsterbusch, K.

Fu, L.

Hak, D.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Haugen, C.

Hodelin, J.

Huang, Y.

Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
[CrossRef]

Jackson, S. D.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[CrossRef]

Jones, R.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Kasap, S.

Krause, M.

Lamont, M. R.

Lenz, G.

Lin, C.

Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
[CrossRef]

Littler, I. C.

Liu, A.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Luan, F.

Luther-Davies, B.

Madden, S.

McMullin, J.

Minakata, M.

Moon, J. A.

J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000).
[CrossRef]

Moss, D. J.

Nguyen, H.

Nguyen, H. C.

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Ogusu, K.

Paniccia, M.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Pelusi, M.

Pelusi, M. D.

Petit, L.

Ponnampalam, N.

Renner, H.

Richardson, K.

Rochette, M.

Rong, H.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguide,” J. Lightwave Technol. 24(3), 1440–1455 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Sanghera, J.

Schaafsma, D. T.

J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000).
[CrossRef]

Shaw, L.

Shaw, L. B.

Shum, P.

Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
[CrossRef]

Slusher, RR. E.

Stegeman, G.

Stegeman, R.

Suzuki, K.

Ta’eed, V.

Ta’eed, V. G.

Thielen, P.

Tuniz, A.

Appl. Phys. Lett. (1)

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88(22), 221106 (2006).
[CrossRef]

Fiber Integr. Opt. (1)

J. A. Moon and D. T. Schaafsma, “Chalcogenide fibers: an overview of selected applications,” Fiber Integr. Opt. 19(3), 201–210 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Huang, P. Shum, and C. Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Commun. 283(7), 1389–1393 (2010).
[CrossRef]

Opt. Express (9)

P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11(24), 3248–3253 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-24-3248 .
[CrossRef] [PubMed]

M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Opt. Express 12(23), 5703–5710 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-23-5703 .
[CrossRef] [PubMed]

N. Ponnampalam, R. Decorby, H. Nguyen, P. Dwivedi, C. Haugen, J. McMullin, and S. Kasap, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12(25), 6270–6277 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-25-6270 .
[CrossRef] [PubMed]

K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-21-8634 .
[CrossRef] [PubMed]

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-22-10371 .
[CrossRef] [PubMed]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-24-11702 .
[CrossRef] [PubMed]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-15-15-9205 .
[CrossRef] [PubMed]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-16-22-18524 .
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-17-5-3514 .
[CrossRef] [PubMed]

Other (1)

S. Madden, A. Prasad, R. Wang, D. Bulla, and B. Luther-Davies, “Highly nonlinear Ge11.5As24Se64.5 chalcogenide glass waveguides” 2009 35th European Conference on Optical Communication (ECOC), art. no. 5287363.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of As2Se3 waveguide Raman laser, (a) waveguide cross-section dimensions, (b) simulated mode field pattern of the fundamental TE0 mode (Aeff = 1.97µm2) and (c) cavity structure.

Fig. 2
Fig. 2

Single-pass Raman gain for As2Se3 and silicon waveguide under normal (τeff = 23ns) and 25V biased (τeff = 1ns) operation [2].

Fig. 3
Fig. 3

(a) Conversion efficiency for As2Se3 under different measured gR [8,9] and silicon; (b) output power for As2Se3 and silicon waveguide Raman laser. Stokes output subjected to no TPA (β = 0cm/GW) or linear propagation (αp = αs = 0dB/m) loss are also displayed.

Fig. 4
Fig. 4

Influence of waveguide length (L) on (a) lasing threshold and optimal conversion efficiency; (b) FOM for both As2Se3 and silicon waveguide Raman laser.

Fig. 5
Fig. 5

Influence of Stokes front end-facet reflectivity on (a) lasing threshold and maximum conversion efficiency, (b) FOM.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

± d E p f , b d z = [ g r 2 A e f f λ s λ p ( | E s f | 2 + | E s b | 2 ) α p 2 β 2 A e f f ( | E p f , b | 2 + 2 | E s f | 2 + 2 | E s b | 2 + 2 | E p b , f | 2 ) ] E p f , b
± d E s f , b d z = [ g r 2 A e f f ( | E p f | 2 + | E p b | 2 ) α s 2 β 2 A e f f ( | E s f , b | 2 + 2 | E p f | 2 + 2 | E p b | 2 + 2 | E s b , f | 2 ) ] E s f , b
E p f ( 0 ) = 1 R f r o n t , p E i n c + R f r o n t , p E p b ( 0 )
E p b ( L ) = R b a c k , p E p f ( L )
E s f ( 0 ) = R f r o n t , s E s b ( 0 )
E s b ( L ) = R b a c k , s E s f ( L )
FOM = O u t p u t S t o k e s P o w e r ( a t 1 W p u m p i n g ) T h r e s h o l d P o w e r

Metrics