Abstract

This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer

Bhargab Das and Vikash Chandra
Appl. Opt. 55(29) 8287-8292 (2016)

Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides

C. Potts, T. W. Allen, A. Azar, A. Melnyk, C. R. Dennison, and R. G. DeCorby
Opt. Lett. 39(20) 5941-5944 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
    [Crossref]
  2. Y. J. Rao, Z. L. Ran, and R. R. Chen, “Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration,” Opt. Lett. 31(18), 2684–2686 (2006).
    [Crossref] [PubMed]
  3. P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
    [Crossref]
  4. J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
    [Crossref]
  5. J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
    [Crossref]
  6. D. Tosi, M. Olivero, and G. Perrone, “Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection,” Appl. Opt. 47(28), 5123–5129 (2008).
    [Crossref] [PubMed]
  7. T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
    [Crossref]
  8. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
    [Crossref] [PubMed]
  9. C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
    [Crossref]

2010 (2)

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[Crossref] [PubMed]

2009 (2)

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

2008 (2)

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

D. Tosi, M. Olivero, and G. Perrone, “Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection,” Appl. Opt. 47(28), 5123–5129 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (1)

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[Crossref]

1988 (1)

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Ban, D.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Chang, J.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Chen, R. R.

Cibula, E.

Donlagic, D.

Huo, D

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Huo, D.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Huo, D. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

Jin, Z.

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[Crossref]

Lee, C. E.

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Liu, T.

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Liu, T. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

Liu, X.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Liu, X. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

Ma, L.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Ning, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Olivero, M.

Perrone, G.

Rahimi, S.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Ran, Z. L.

Rao, Y. J.

Shang, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Song, M.

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[Crossref]

Sun, F.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Taylor, H. F.

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

Tosi, D.

Tsai, P.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Wang, C.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Wang, J. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

Wang, Q.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Wang, Z

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Wei, Y.

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Xiao, G.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Zhang, X.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Zhang, Z.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

Zhao, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[Crossref]

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[Crossref]

J. Phys.: Conf. Ser. (1)

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[Crossref]

Laser Phys. (1)

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[Crossref]

Meas. Sci. Technol. (1)

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sensor interogation system (TEC-thermo-electric cooler, NTC- negative temperature coefficient thermistor, TIA- transimpedance amplifier, PCG-programmable current generator)

Fig. 2
Fig. 2

Typical measured response of LC25-EW module wavelength locker detectors to laser wavelength variation

Fig. 3
Fig. 3

Measured and interpolated wavelength locker function W(λ) obtained during the calibration process for typical Oclaro LC25-EW DWDM module

Fig. 4
Fig. 4

Example of FBG sensor’s reflectivity versus wavelength obtained by the current sweep and processing of raw data recorded by all four detectors

Fig. 5
Fig. 5

Demonstration of FBG temperature sensor interrogation; the temperature was increased and reduced back to the initial temperature for 0.1, 0.2, 0.5, and 1.1°C

Fig. 6
Fig. 6

Change of peak wavelength when FBG was cyclically strained for 1 με (output filter corner frequency was set at 1 Hz).

Fig. 7
Fig. 7

Dynamic performance of proposed integration system: A steel plate containing interrogated FBG and reference electrical strain gauge was exposed to nearly harmonic excitation bursts (the excitation signal within burst had frequency of 1 Hz and 5 Hz).

Fig. 8
Fig. 8

Peak wavelength during high temperature changes on AFFP

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w 0 ( λ 0 ) = I d e t 3 ( λ 0 ) I d e t 4 ( λ 0 ) I d e t 3 ( λ 0 ) + I d e t 4 ( λ 0 )
w 0 = W ( λ 0 )

Metrics