Abstract

We present a silicon avalanche photodetector (APD) fabricated with standard complementary metal-oxide-semiconductor (CMOS) technology without any process modification or special substrates. The CMOS-APD is based on N+/P-well junction, and its current-voltage characteristics, responsivity, avalanche gain, and photodetection frequency response are measured. Gain-bandwidth product over 1 THz is achieved with the CMOS-APD having avalanche gain of 569 and 3-dB photodetection bandwidth of 3.2 GHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
    [CrossRef]
  2. L. Pavesi, and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  4. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
    [CrossRef]
  5. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  6. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [CrossRef]
  7. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [CrossRef] [PubMed]
  8. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  9. W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-C. Liu, Y.-T. Huang, C.-F. Chiu, W.-H. Chang, and Y.-Z. Juang, “A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer,” in Proceedings of IEEE Asian Solid-State Circuits Conference (IEEE, 2007), pp. 396–399.
  10. W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
    [CrossRef]
  11. W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
    [CrossRef]
  12. H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
    [CrossRef]
  13. K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
    [CrossRef]
  14. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
    [CrossRef]

2010

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
[CrossRef]

2009

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

2008

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
[CrossRef]

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

2007

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
[CrossRef]

H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
[CrossRef]

2006

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Barkai, A.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Campbell, J. C.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Choi, W.-Y.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
[CrossRef]

Cohen, O.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Cohen, R.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Fathpour, S.

Hsin, Y.-M.

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
[CrossRef]

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
[CrossRef]

Huang, W.-K.

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
[CrossRef]

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
[CrossRef]

Iiyama, K.

K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
[CrossRef]

Izhaky, N.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Jalali, B.

Kang, H.-S.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
[CrossRef]

Kang, Y.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Koehl, S.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Lee, M.-J.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
[CrossRef]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Liu, A.

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[CrossRef]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Liu, Y.-C.

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
[CrossRef]

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
[CrossRef]

Maruyama, T.

K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Morse, M. T.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Paniccia, M.

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[CrossRef]

Paniccia, M. J.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Rubin, D.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Takamatsu, H.

K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
[CrossRef]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[CrossRef] [PubMed]

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Appl. Phys. Lett.

H.-S. Kang, M.-J. Lee, and W.-Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90(15), 151118 (2007).
[CrossRef]

IEE Electron. Lett.

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” IEE Electron. Lett. 44(1), 52–53 (2008).
[CrossRef]

IEEE Electron Device Lett.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

W.-K. Huang, Y.-C. Liu, and Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon. Technol. Lett. 19(4), 197–199 (2007).
[CrossRef]

K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-μm CMOS process,” IEEE Photon. Technol. Lett. 22(12), 932–934 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[CrossRef]

Nature

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Opt. Express

Physica E

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[CrossRef]

Other

L. Pavesi, and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).

W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-C. Liu, Y.-T. Huang, C.-F. Chiu, W.-H. Chang, and Y.-Z. Juang, “A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer,” in Proceedings of IEEE Asian Solid-State Circuits Conference (IEEE, 2007), pp. 396–399.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-sectional structures of the fabricated CMOS-APD.

Fig. 2
Fig. 2

Current-voltage characteristics of the CMOS-APD under illumination and dark conditions.

Fig. 3
Fig. 3

Responsivity and avalanche gain of the CMOS-APD as a function of the reverse bias voltage.

Fig. 4
Fig. 4

Photodetection frequency responses of the CMOS-APD at different bias voltages.

Fig. 5
Fig. 5

Gain-bandwidth characteristic of the CMOS-APD.

Tables (1)

Tables Icon

Table 1 Performance comparison of silicon avalanche photodetectors fabricated with standard CMOS technology

Metrics