Abstract

The microwave response of a square array of “metal capped” holes in a metal sheet is explored both experimentally and numerically. Above each circular aperture are concentrically placed metallic discs, separated by a fraction of the wavelength, with discs having radii larger than the apertures. The volume bound by the overlap supports a family of resonances that mediate transmission with the fundamental resonant mode being a factor of ~2.3 lower in frequency than the bare aperture resonance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Ngai, and A. P. Smolski, “Electromagnetic properties of metal space frame radomes for use in satellite communications earth stations,” Antennas and Propag. Society International Symposium, AP-S Digest, 3, 1956–1959, (1993)
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981).
    [CrossRef]
  4. E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
    [CrossRef]
  5. E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991).
    [CrossRef]
  6. R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
    [CrossRef]
  7. D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).
  8. M. Beruete, R. Marques, J. D. Baena, and M. Sorolla, “Resonace and cross polarisation effects in conventional and complementary split ring resonantors periodic screens” Antenna and Propag. Society International Symposium., 3A, 794–797, (2005)
  9. I. Tardy, C. H. Chan, and J. S. Yee, “Analysis of the Yee Frequency Selective Surface” Antenna and Prop. Society International Symposium, AP-S Digest, 1, 196–199, (1991)
  10. A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
    [CrossRef]
  11. D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
    [CrossRef]
  12. isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994).
    [CrossRef]
  13. R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991).
    [CrossRef]
  14. J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995).
    [CrossRef]
  15. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
    [CrossRef] [PubMed]
  16. N. Behdad, “A second-order band-pass frequency selective surface using non resonant sub wavelength periodic structures,” Microw. Opt. Technol. Lett. 50(6), 1639–1643 (2008).
    [CrossRef]
  17. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).
  18. B. A. Munk, Frequency Selective Surfaces Theory and Design, (John Wiley & Sons 2000)
  19. Nelco, California, USA.
  20. HFSS, Ansoft Corporation, Pittsburgh, PA, USA.

2008 (1)

N. Behdad, “A second-order band-pass frequency selective surface using non resonant sub wavelength periodic structures,” Microw. Opt. Technol. Lett. 50(6), 1639–1643 (2008).
[CrossRef]

2004 (2)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

2000 (2)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1995 (1)

J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995).
[CrossRef]

1994 (2)

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994).
[CrossRef]

1991 (2)

R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991).
[CrossRef]

E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991).
[CrossRef]

1984 (1)

R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
[CrossRef]

1981 (2)

E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
[CrossRef]

Apostolopoulos, G.

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

Behdad, N.

N. Behdad, “A second-order band-pass frequency selective surface using non resonant sub wavelength periodic structures,” Microw. Opt. Technol. Lett. 50(6), 1639–1643 (2008).
[CrossRef]

Brown, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

El Sheikh, A. N. A.

E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991).
[CrossRef]

Feresidis, A. P.

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Hall, R.

R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
[CrossRef]

Hamdy, S. M. A.

E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Hobson, P. A.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Langley, R. J.

E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Lockyer, D.

isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994).
[CrossRef]

Lockyer, D. S.

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

Mittra, R.

R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
[CrossRef]

Moore, C.

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

Parker, E. A.

E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991).
[CrossRef]

E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
[CrossRef]

Pous, R.

R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991).
[CrossRef]

Pozar, D. M.

R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Seager, R.

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

Serfas, N.

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

Shafai, L.

J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995).
[CrossRef]

Shaker, J.

J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995).
[CrossRef]

Simpkin, R.

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

Simpkin, R. A.

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tsao, C.-H.

R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
[CrossRef]

Vardaxoglou, J. C.

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Electron. Lett. (5)

E. A. Parker and S. M. A. Hamdy, “Rings as elements for frequency selective surfaces,” Electron. Lett. 17(17), 612–614 (1981).
[CrossRef]

E. A. Parker, S. M. A. Hamdy, and R. J. Langley, “Arrays of concentric rings as frequency selective surfaces,” Electron. Lett. 17(23), 880–881 (1981).
[CrossRef]

E. A. Parker and A. N. A. El Sheikh, “Convolted dipole array elements,” Electron. Lett. 27(4), 322–323 (1991).
[CrossRef]

D. S. Lockyer, C. Moore, R. Seager, R. Simpkin, and J. C. Vardaxoglou, “Coupled dipole arrays as reconfigurable frequency selective surfaces,” Electron. Lett. 30(16), 1258–1259 (1994).
[CrossRef]

isJ. C. Vardaxoglou and D. Lockyer, “Modified FSS response from two sided and closely coupled arrays,” Electron. Lett. 30(22), 1818–1819 (1994).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (1)

J. Shaker and L. Shafai, “Removing the angular sensitivity of frequency selective surface structures using novel double-layer structures,” IEEE Microw. Guid. Wave Lett. 5(10), 324–325 (1995).
[CrossRef]

IEEE Trans. Antenn. Propag. (4)

A. P. Feresidis, G. Apostolopoulos, N. Serfas, and J. C. Vardaxoglou, “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antenn. Propag. 52(5), 1149–1158 (2004).
[CrossRef]

R. Pous and D. M. Pozar, “A frequency selective surface using aperture coupled microstrip patches,” IEEE Trans. Antenn. Propag. 39(12), 1763–1769 (1991).
[CrossRef]

R. Mittra, R. Hall, and C.-H. Tsao, “Spectral-domain analysis of circular patch frequency selective surfaces,” IEEE Trans. Antenn. Propag. 32(5), 533–536 (1984).
[CrossRef]

D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin, “Complementary frequency selective surfaces,” IEEE Trans. Antenn. Propag. 147(6), 501–507 (2000).

J. Appl. Phys. (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarisation independent microwave absorption,” J. Appl. Phys. 94, 041913 (2000).

Microw. Opt. Technol. Lett. (1)

N. Behdad, “A second-order band-pass frequency selective surface using non resonant sub wavelength periodic structures,” Microw. Opt. Technol. Lett. 50(6), 1639–1643 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Other (6)

B. A. Munk, Frequency Selective Surfaces Theory and Design, (John Wiley & Sons 2000)

Nelco, California, USA.

HFSS, Ansoft Corporation, Pittsburgh, PA, USA.

E. C. Ngai, and A. P. Smolski, “Electromagnetic properties of metal space frame radomes for use in satellite communications earth stations,” Antennas and Propag. Society International Symposium, AP-S Digest, 3, 1956–1959, (1993)

M. Beruete, R. Marques, J. D. Baena, and M. Sorolla, “Resonace and cross polarisation effects in conventional and complementary split ring resonantors periodic screens” Antenna and Propag. Society International Symposium., 3A, 794–797, (2005)

I. Tardy, C. H. Chan, and J. S. Yee, “Analysis of the Yee Frequency Selective Surface” Antenna and Prop. Society International Symposium, AP-S Digest, 1, 196–199, (1991)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental sample and the coordinate system used. Note that the three layers, patch array (upper), dielectric spacer (middle) and aperture array (lower), have been separated for clarity.

Fig. 2
Fig. 2

Experimental spectral transmission as a function of both frequency and in-plane wavevector (k // = k 0 sin θ) for (a) TE ψ = 0°; (b) TM ψ = 0°; (c) TE ψ = 45°; (d) TM ψ = 45°. Diffracted light lines are indicated by black dotted lines, and are labelled with their order (note only magnitude, not direction, is labelled). The transmission intensity is shown on a linear saturated scale from 0.0 (white) to greater than 0.2 (black).

Fig. 3
Fig. 3

(a) Experimental data (circles) and FEM modelling (solid thick black line) for TE polarised incident radiation with θ = 10° and ψ = 30°. The dotted black lines represent the predicted resonant frequencies using Eq. (1) of the first, second and third order modes. The dotted grey line shows the (1,0) diffracted light line. (b) FEM predictions of the transmission spectra of the response of the component aperture and patch arrays, together with the dual layer geometry, spaced with air and NY9220 dielectric.

Fig. 4
Fig. 4

Field predictions on resonance from the FEM model (a) electric field and (b) magnetic field vectors at a phase corresponding to maximum field enhancement (χ) for the first order mode (TM, θ = 5°, ψ = 0°). (c) to (e) illustrate the electric field magnitude on resonance of the first, second and third order modes (c, d and e respectively) for θ = 5°, ψ = 0° and TE polarization. (f) to (h) illustrate the electric field magnitude on resonance of the first, second and third order modes (f, g and h respectively) for θ = 5°, ψ = 0° and TM polarization. Solid black arrows with a white outline and white arrows with a black outline represent the magnetic and electric vector components directions in the xy-plane respectively. White dotted arrows depict the in-plane (xy-plane) incident electric vectors. Note, (a) to (h) are plotted in the xy-plane at an equal distance (0.2 mm) from the patch and aperture array. (c) and (f) show electric field enhancements ranging from 0 to 12, (d) and (g) from 0 to 57, and (e) and (h) from 0 to 50 times the incident field. The solid white line and dotted white line show the outline of the patch and aperture respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f m = m c 2 π r m n

Metrics