Abstract

A mode-locked Raman fiber laser pumped by 1.3 µm semiconductor disk laser is demonstrated. Direct Watt-level core-pumping of the single-mode fiber Raman lasers and amplifiers with low-noise disk lasers is demonstrated to represent a highly practical solution as compared with conventional scheme using pumping by Raman wavelength convertors. Raman laser employing passive mode-locking by nonlinear polarization evolution in normal dispersion regime produces stable pedestal-free 1.97 ps pulses at 1.38 µm. Using semiconductor disk lasers capable of producing high power with diffraction-limited beam allows Raman gain to be obtained at virtually any wavelength of interest owing to spectral versatility of semiconductor gain materials and wafer-fusing technology.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-optic communication systems 3rd Edition (Wiley-Interscience, 2002).
  2. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 549 (2002).
  3. Oclaro pump laser module datasheet (Olcaro, Inc, 2010) http://www.oclaro.com/product_pages/LC96U_.html
  4. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, “Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber,” Opt. Lett. 25(6), 402–404 (2000).
    [CrossRef]
  5. J. Rautiainen, J. Lyytikäinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “2.6 W optically-pumped semiconductor disk laser operating at 1.57-microm using wafer fusion,” Opt. Express 16(26), 21881–21886 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-26-21881 .
    [CrossRef] [PubMed]
  6. J. Lyytikäinen, J. Rautiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “1.3-μm optically-pumped semiconductor disk laser by wafer fusion,” Opt. Express 17(11), 9047–9052 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9047 .
    [CrossRef] [PubMed]
  7. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental Investigation and Analytical Modeling of Excess Intensity Noise in Semiconductor Class-A Lasers,” J. Lightwave Technol. 26, 952–961 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-8-952 .
    [CrossRef]
  8. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18(5), 5008–5014 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-5-5008 .
    [CrossRef] [PubMed]
  9. D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett. 30(22), 2982–2984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-22-2982 .
    [CrossRef] [PubMed]
  10. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31(23), 3489–3491 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-23-3489 .
    [CrossRef] [PubMed]
  11. A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
    [CrossRef]
  12. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers. Technology and applications (Marcel Dekker, Inc., 2003).
  13. A. Chamorovskiy, J. Rautiainen, J. Lyytikäinen, S. Ranta, M. Tavast, A. Sirbu, E. Kapon, and O. G. Okhotnikov, “Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror,” Opt. Lett. 35, 3529–3531 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-20-3529 .
    [CrossRef] [PubMed]
  14. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2002 (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 549 (2002).

2000 (1)

1997 (1)

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Alouini, M.

Baili, G.

Behrend, J.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Berseth, C. A.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Bretenaker, F.

Bubnov, M. M.

Bufetov, I. A.

Caliman, A.

Carlin, J. F.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Chamorovskiy, A.

Chestnut, D. A.

Chong, A.

Coen, S.

Dianov, E. M.

Dolfi, D.

Fernandez, J.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Ghosh, R.

Goldfarb, F.

Grekov, M. V.

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 549 (2002).

Kapon, E.

Lyytikäinen, J.

Medvedkov, O. I.

Mereuta, A.

Miranda, B.-X.

Morvan, L.

Okhotnikov, O. G.

Pal, V.

Ranta, S.

Rautiainen, J.

Renninger, W. H.

Rudra, A.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Sagnes, I.

Schröder, J.

Sirbu, A.

Sylvestre, T.

Syrbu, A. V.

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

Tavast, M.

Taylor, J. R.

Toikkanen, L.

Trofimoff, P.

Vanholsbeeck, F.

Vasiliev, S. A.

Wise, F. W.

Electron. Lett. (1)

A. V. Syrbu, J. Fernandez, J. Behrend, C. A. Berseth, J. F. Carlin, A. Rudra, and E. Kapon, “InGaAs/InGaAsP/InP edge emitting laser diodes on p-GaAs substrates obtained by localized wafer fusion,” Electron. Lett. 33, 866–868 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 549 (2002).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (5)

Other (3)

G. P. Agrawal, Fiber-optic communication systems 3rd Edition (Wiley-Interscience, 2002).

Oclaro pump laser module datasheet (Olcaro, Inc, 2010) http://www.oclaro.com/product_pages/LC96U_.html

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers. Technology and applications (Marcel Dekker, Inc., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Output characteristic of continuous-wave Raman laser. Pump beam coupling efficiency from SDL to single-mode fiber is 70% at highest power of 1.8 W. Optical isolator placed between SDL and Raman laser induces the loss of 0.5 dB. (b) Optical spectrum of 1.38 µm continuous-wave Raman laser and spectral component of residual pump at 1.3 µm. Pump power is 1 W.

Fig. 2
Fig. 2

Schematic of mode-locked Raman fiber laser.

Fig. 3
Fig. 3

Output characteristic of modelocked laser versus launched pump power. Pump power is limited to 1W due to loss induced by an optical isolator.

Fig. 4
Fig. 4

(a) Spectrum of mode-locked pulses centered at 1.38 µm and unconverted pump at 1.3 µm and (b) detailed spectrum of mode-locked pulses.

Fig. 5
Fig. 5

Mode-locked pulse train as observed from oscilloscope for different pump powers. Pulse repetition rate: 0.3 MHz.

Fig. 6
Fig. 6

Autocorrelation of the pulse at 0.8 W of pump power with Gaussian fit showing pulse duration of 1.97 ps.

Metrics