Abstract

We demonstrated a method for the measurement of signed frequency offset between optical source and delay interferometer (DI) for 10Gb/s DPSK signals based on asynchronous delay-tap sampling technique with a chromatic dispersion (CD) offset. The demodulated DPSK signals show asymmetrical property and amplitude shoulder appears on the waveforms with frequency offset and a fixed CD offset together. The delay-tap sampling scatter plots also show the asymmetry related to the asymmetrical signal distortion. Our proposed method cannot only realize the measurement of the magnitude of frequency offset but also the polarity. The measurement range is from −2GHz to + 2GHz and the sensitivity can reach ± 100MHz. The simulation and experimental results are demonstrated and in good agreement.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keying transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  2. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
    [CrossRef]
  3. B. Zhu, L. Nelson, S. Stulz, A. Gnauck, C. Doerr, J. Leuthold, L. Nielsen, M. Pedersen, J. Kim, R. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri and S. Namiki, “6.4-Tb/s (160 x 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 x 100 km of fiber using CSRZ-DPSK format,” in Conf. Optical Fiber Communications (OFC), paper PD3 (2003).
  4. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK system,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
    [CrossRef]
  5. P. J. Winzer and H. Kim, “Degradations in balanced DPSK receivers,” IEEE Photon. Technol. Lett. 15(9), 1282–1284 (2003).
    [CrossRef]
  6. H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
    [CrossRef]
  7. L. Christen, S. Nuccio, Y. Lize, N. Layachandran, A. E. Willner, and L. Paraschis, “Stabilization of a 40Gb/s DPSK delay-line interferometer using half bit-rate AM pilot tone monitoring,” Conference on Lasers and Electro-Optics (CLEO), paper CMJJ2 (2007).
  8. S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
    [CrossRef]
  9. S. Dods and T. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Conf. Optical Fiber Communications (OFC), paper OThP5 (2006).
  10. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK system,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
    [CrossRef]
  11. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
    [CrossRef]
  12. X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner, “Applications of Artificial Neural Networks in Optical Performance Monitoring,” J. Lightwave Technol. 27(16), 3580–3589 (2009).
    [CrossRef]

2009 (2)

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner, “Applications of Artificial Neural Networks in Optical Performance Monitoring,” J. Lightwave Technol. 27(16), 3580–3589 (2009).
[CrossRef]

2006 (1)

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

2005 (1)

2004 (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

2003 (3)

1993 (1)

S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
[CrossRef]

Chung, Y. C.

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

Gnauck, A. H.

Hoon Kim, J. H.

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

Jargon, J. A.

Ji, H. C.

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

Kim, H.

Kitayama, K.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

Kozicki, B.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

Lee,

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

Liu, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Maruta, A.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

Nielsen, S. K.

S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
[CrossRef]

Paraschis, L.

Park, P. K. J.

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

Skipper, B. F.

S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
[CrossRef]

Skoog, R. A.

Villadsen, J. P.

S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
[CrossRef]

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Wu, X.

Xu, C.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Electron. Lett. (1)

S. K. Nielsen, B. F. Skipper, and J. P. Villadsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29(16), 1445–1446 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmission,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. J. Winzer and H. Kim, “Degradations in balanced DPSK receivers,” IEEE Photon. Technol. Lett. 15(9), 1282–1284 (2003).
[CrossRef]

H. C. Ji, P. K. J. Park, J. H. Hoon Kim, Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 18(8), 950–952 (2006).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Other (3)

L. Christen, S. Nuccio, Y. Lize, N. Layachandran, A. E. Willner, and L. Paraschis, “Stabilization of a 40Gb/s DPSK delay-line interferometer using half bit-rate AM pilot tone monitoring,” Conference on Lasers and Electro-Optics (CLEO), paper CMJJ2 (2007).

S. Dods and T. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Conf. Optical Fiber Communications (OFC), paper OThP5 (2006).

B. Zhu, L. Nelson, S. Stulz, A. Gnauck, C. Doerr, J. Leuthold, L. Nielsen, M. Pedersen, J. Kim, R. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri and S. Namiki, “6.4-Tb/s (160 x 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 x 100 km of fiber using CSRZ-DPSK format,” in Conf. Optical Fiber Communications (OFC), paper PD3 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Received signal profiles with (a) 2GHz and (b) −2GHz frequency offset at CD offset of 340ps/nm.

Fig. 2
Fig. 2

(a) Eye diagram and (b) corresponding delay-tap plot of demodulated DPSK signal with 1.25GHz frequency offset and CD offset of 340ps/nm.

Fig. 3
Fig. 3

Experimental configuration of signed frequency offset measurement for DPSK signals.

Fig. 4
Fig. 4

Simulation results of eye diagrams with CD of 340ps/nm and frequency offset of (a)-1GHz; (b)1GHz.

Fig. 5
Fig. 5

Simulation results of delay-tap plots with CD of 340ps/nm and frequency offset of (a)-1GHz; (b)1GHz.

Fig. 6
Fig. 6

Experimental results of eye diagrams with CD of 340ps/nm and frequency offset of (a)-1GHz; (b)1GHz.

Fig. 7
Fig. 7

Experimental results of scatter plots with CD of 340ps/nm and frequency offset of (a)-1GHz; (b)1GHz.

Fig. 8
Fig. 8

Distance ratio DR vs. frequency offset results obtained from simulations and experiments. Insert: amplitude shoulders appear on the trailing edges of demodulated DPSK signals with frequency offset of 1.25GHz and CD offset of 340ps/nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D R = 10 l o g 10 ( d 1 d 2 )

Metrics