Abstract

In this paper, we propose a novel optical waveguide consisting of arrays of silicon nanowires in close proximity. We show that such a structure can guide an optical mode provided the electric field is polarized along the length of the nanowires. Furthermore, such guidance can happen even if the nanowires are arranged randomly albeit at a higher scattering loss. On the other hand, high radiation losses are observed if the electric field is polarized in the transverse direction to the nanowires. We calculate the optical radiation loss for different structures using Finite Difference Time Domain (FDTD) method. We also show that the arrayed nanowire region can be approximated using an effective index bulk waveguide. The approximation allows for design and optimization of optical structures using integrated optics methodology resulting in significant savings in time and resources. The advantage of the proposed waveguide structure is that it allows for increased optical confinement while using the enhanced optical interactions of nanowire structures compared to single nanowire photonic waveguide for diameters smaller than 100 nm. For a diameter of 50 nm for the silicon nanowire, an optical confinement factor of 33 % was achieved in the proposed waveguide as opposed to 0.1 % that is achieved for a single nanowire photonic waveguide. A radiation loss of 0.12 cm−1 is achieved for nanowires of the same diameter spaced 75 nm apart. While our analysis is done on silicon nanowires at 1550 nm, the proposed structures can be extended to other materials and wavelength regimes also.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol. 24, 1440-1455 (2006).
    [CrossRef]
  2. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
    [CrossRef] [PubMed]
  3. Q. Xu, V. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
    [CrossRef] [PubMed]
  4. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
    [CrossRef] [PubMed]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
    [CrossRef]
  6. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  8. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752-4757 (2009).
    [CrossRef] [PubMed]
  9. B. A. Daniel, and G. P. Agrawal, "Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects," J. Opt. Soc. Am. B 27, 956-964 (2010).
    [CrossRef]
  10. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  11. A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
    [CrossRef]
  12. J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
    [CrossRef]
  13. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
    [CrossRef] [PubMed]
  14. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
    [CrossRef]
  15. D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
    [CrossRef]
  16. L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
    [CrossRef] [PubMed]
  17. Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
    [CrossRef]
  18. W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
    [CrossRef]
  19. K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).
  20. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
    [CrossRef]
  21. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  22. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
    [CrossRef] [PubMed]
  23. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  24. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
    [CrossRef]
  25. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
    [CrossRef] [PubMed]
  26. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials Theory, Design and Applications, (Springer, 2009).
  27. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
    [CrossRef] [PubMed]
  28. M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
    [CrossRef]
  29. M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
    [CrossRef]
  30. M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006).
    [CrossRef]
  31. H. J. Eom, Electromagnetic Wave Theory for Boundary-Value Problems, (Springer, 2004).
  32. M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
    [CrossRef]
  33. G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
    [CrossRef]
  34. K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).
  35. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752-4757 (2009).
[CrossRef] [PubMed]

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

2008 (1)

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

2006 (4)

L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
[CrossRef] [PubMed]

M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006).
[CrossRef]

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol. 24, 1440-1455 (2006).
[CrossRef]

2005 (5)

R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

2004 (8)

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

Q. Xu, V. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
[CrossRef]

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

2003 (2)

V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

2002 (1)

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

2001 (5)

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
[CrossRef]

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

1996 (1)

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
[CrossRef]

1992 (1)

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

Agrawal, G. P.

Alman, G. M.

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

Almeida, V.

Almeida, V. R.

Anantram, M. P.

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Barrelet, C. J.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Boyraz, O.

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Buin, A.

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
[CrossRef]

Cao, L.

L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
[CrossRef] [PubMed]

Cardenas, J.

Carruthers, J. R.

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

Cerrina, F.

Chan, C. T.

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

Chang, J. F.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Chen, L.

Chen, M. J.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Chen, W.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

Chen, Y.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Cohen, O.

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Daniel, B. A.

Doty, R. C.

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

Duan, X.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

Dutta, M.

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

Feick, H.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Freeouf, J. L.

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

Fukuda, H.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Gharghi, M.

M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006).
[CrossRef]

Goldberger, J.

M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
[CrossRef]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Grigoropoulos, S.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
[CrossRef]

Gudiksen, M. S.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

Hak, D.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Henry, M. D.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

Holmes, J. D.

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

Homyk, A.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

Huang, M.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

Huang, Z. P.

K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).

Huo, J.

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

Itabashi, S.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Jalali, B.

Johnston, K. P.

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

Jones, R.

Kamins, T. I.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Kimerling, L. C.

Kind, H.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Kong, Y.

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

Koonath, P.

Korgel, B. A.

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Kwan, K. C.

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

Lauhon, L. J.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

Law, M.

M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
[CrossRef]

Lee, K. K.

Lee, S. T.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

Li, J. Y.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Li, X.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Li, Z.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Lieber, C. M.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

Lim, D. R.

Lipson, M.

Liu, A.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Mao, S.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Molter, L. A.

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Nabet, B.

L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
[CrossRef] [PubMed]

Nassiopoulos, A. G.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
[CrossRef]

Panepucci, R. R.

Paniccia, M.

Papadimitriou, D.

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
[CrossRef]

Peng, K. Q.

K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).

Poitras, C. B.

Preston, K.

Raghunathan, V.

Rajendran, B.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Robinson, J. T.

Rong, H.

Russo, R.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Scherer, A.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

Shen, H.

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

Shin, J.

Shiri, D.

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

Shoji, T.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Sivoththaman, S.

M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006).
[CrossRef]

Solanki, R.

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

Spanier, J. E.

L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
[CrossRef] [PubMed]

Takahashi, J.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tsai, S. C.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Tsaic, C. S.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

Tzang, C. H.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
[CrossRef]

Walavalkar, S.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

Wang, D.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

Weber, E.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Williams, R. S.

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

Wu, Y.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Xu, Q.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005).
[CrossRef]

Yan, H.

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, M.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

Yang, P.

M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
[CrossRef]

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yao, H.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

Yen, J. L.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

Zang, X.

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

Zhang, Z. Q.

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

Zhu, J.

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).

Annu. Rev. Mater. Res. (1)

M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006).
[CrossRef]

A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996).
[CrossRef]

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004).
[CrossRef]

D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008).
[CrossRef]

K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).

Appl. Phys., A Mater. Sci. Process. (1)

Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006).
[CrossRef]

Nano Lett. (1)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Nanotechnology (2)

J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004).
[CrossRef]

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009).
[CrossRef]

Nat. Mater. (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Nature (2)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
[CrossRef]

L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006).
[CrossRef] [PubMed]

Science (3)

M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001).
[CrossRef] [PubMed]

J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000).
[CrossRef] [PubMed]

Other (2)

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials Theory, Design and Applications, (Springer, 2009).

H. J. Eom, Electromagnetic Wave Theory for Boundary-Value Problems, (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Optical confinement factor versus diameter of single nanowire silicon waveguide surrounded by air at wavelength of 1550 nm.

Fig. 2
Fig. 2

3-D schematic diagram of SOI rib waveguide using arrays of SiNWs.

Fig. 3
Fig. 3

Cross section of the SiNW cylinder, a is the radius of the nanowire.

Fig. 4
Fig. 4

Amplitude of electric field in y direction (Ey) for SiNWs with diameters of 600 nm, 400 nm, 200 nm, 100 nm, 50 nm and 20 nm, at wavelength of 1550 nm.

Fig. 5
Fig. 5

Phase of electric field in y direction (Ey) for SiNWs with diameters of 600 nm, 400 nm, 200 nm, 100 nm, 50 nm and 20 nm, at wavelength of 1550 nm.

Fig. 6
Fig. 6

Cross-section of the phase front at the center of the SiNWs with diameters of 200 nm, 100 nm, 50 nm and 20 nm, at wavelength of 1550 nm.

Fig. 7
Fig. 7

Amplitude of magnetic field in y direction (Hy) for SiNWs with diameters of 600 nm, 400 nm, 200 nm, 100 nm, 50 nm and 20 nm, at wavelength of 1550 nm.

Fig. 8
Fig. 8

Phase of magnetic field in y direction (Hy) for SiNWs with diameters of 600 nm, 400 nm, 200 nm, 100 nm, 50 nm and 20 nm, at wavelength of 1550 nm.

Fig. 9
Fig. 9

Schematic diagram of a FP cavity using arrays of SiNWs sandwitched between two bulk silicon waveguides.

Fig. 10
Fig. 10

Longitudinal electric field of arrays of SiNWs with diameter of 20 nm and pitch of 30 nm when they are located between two bulk silicon waveguides with the same width, at wavelength of 1550 nm. The electric field is polarized along the length of the nanowires.

Fig. 11
Fig. 11

Longitudinal electric field of arrays of SiNWs with diameter of 20 nm and pitch of 30 nm when they are butt joint to a waveguide with an index equal to the effective index of the nanowire region, at wavelength of 1550 nm.The electric field is polarized along the length of the nanowires.

Fig. 12
Fig. 12

Optical mode shape of optical waveguide and SNOW region.

Fig. 13
Fig. 13

Variation of loss versus diameter of SiNWs when diameter/pitch ratio is kept unchanged, 1 : 1.5.

Fig. 14
Fig. 14

Variation of loss versus pitch of SiNWs in the array.

Fig. 15
Fig. 15

Longitudinal electric field of arrays of SiNWs when they are randomly located and butt joint to a waveguide with an index equal to the effective index of the nanowire region, at wavelength of 1550 nm. The boundary of the SNOW region and effective index waveguide has been highlighted.

Fig. 16
Fig. 16

Longitudinal electric field of arrays of SiNWs when they are butt joint to a waveguide with an index equal to the effective index of the nanowire region, at wavelength of 1550 nm and magnetic field polarized along the length of the nanowires.

Tables (1)

Tables Icon

Table I Different calculated optical mode parameters for the SNOW with diameter of 50 nm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A y i = e i k z = e i k ρ cos ϕ ,
E y i = E 0 e ikz .
A y i ( ρ , ϕ ) = n = B n e in ϕ ,
B n = 1 2 π 0 2 π e i k ρ cos ϕ i n ϕ d ϕ = i n J n ( k ρ ) ,
A y i ( ρ , ϕ ) = n = i n J n ( k ρ ) e in ϕ .
[ 1 ρ ρ ( ρ ρ ) + 1 ρ 2 2 ϕ 2 + k 2 ] A y s ( ρ , ϕ ) = 0 .
A y s ( ρ , ϕ ) = n = i n a n H n ( 1 ) ( k ρ ) e in ϕ ,
A y t ( ρ , ϕ ) = n = i n b n J n ( k 1 ρ ) e i n ϕ .
E y = i ω μ ɛ ( 2 z 2 + k 2 ) A y , and H ϕ = 1 μ A y ρ ,
a n = ɛ μ J n ( K 1 a ) J n ( k a ) ɛ 1 μ 1 J ' n ( k 1 a ) J n ( k a ) ɛ 1 μ 1 J n ( k 1 a ) H n ( 1 ) ( k a ) ɛ μ J n ( k 1 a ) H n ( 1 ) ( k a ) .
b n = ɛ μ H n ( 1 ) ( k a ) J n ( k a ) ɛ μ H n ( 1 ) ( k a ) J n ( k a ) ɛ 1 μ 1 J n ( k 1 a ) H n ( 1 ) ( k a ) ɛ μ J n ( k 1 a ) H n ( 1 ) ( k a )
= 2 i π ω μ a ɛ 1 μ 1 J n ( k 1 a ) H n ( 1 ) ( k a ) ɛ μ J n ( k 1 a ) H n ( 1 ) ( k a ) .
n rep = n Si 2 × A Si + n surround 2 × A surround A Si + A surround ,

Metrics