Abstract

In previous investigation of extended GPON system, we employed 1240nm and 1427nm dual pumps within optical line terminal (OLT) equipments at central office (CO) to provide distributed Raman gains of upstream 1310nm and downstream 1490nm signals. These pump wavelengths were selected to ensure compatibility with the standard GPON wavelengths and reduce the unwanted pump-to-signal interactions. In this paper, we propose a new system scheme for an entirely-passive extended reach GPON to further enhance the system performance by eliminating the pump-to-signal interactions. In this scheme, a 1240 nm laser is employed to provide counter-pumping distributed Raman amplification of the upstream 1310nm signal, and a discrete Raman amplifier is integrated with the 1490nm transmitter to booster the downstream signal power and to improve the link loss budget. An operation over 60-km of zero-water-peak Allwave® fiber with a 1:128 way splitter is experimentally demonstrated at 2.5 Gbit/s. The system performance of such purely passive GPON extender is investigated in the paper. The system transmission limitation of upstream signal due to Raman ASE noises is discussed, and the non-linear impairment on downstream signal due to high launch power into feeder fiber is also examined.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chanclou, Z. Belfqih, B. Charbonnier, T. Duong, F. Frank, N. Genay, M. Huchard, P. Guignard, L. Guillo, B. Landousies, A. Pizzinat, H. Ramanitra, F. Saliou, S. Durel, A. Othmani, P. Urvoas, M. Ouzzif, and J. Le Masson, “Optical access evolutions and their impact on the metropolitan and home networks,” in Proceedings of ECOC 2008, paper We.3.F.1. (2008).
  2. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5. (2009)
  3. IITU-T Series Recommendation G.984, “Gigabit-capable passive optical networks (GPON),” (2008)
  4. K. Suzuki, Y. Fukada, D. Nesset, and R. Davey, “Amplified gigabit PON systems,” J. Opt. Netw. 6(5), 422 (2007).
    [CrossRef]
  5. D. Nesset, S. Appathurai and R. Davey, “Extended research GPON using high gain semiconductor optical amplifier,” in Proceeding of OFC2008, paper JWA107 (2008).
  6. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM PONs,” in Proceeding of OFC2007, paper PDP-13 (2007).
  7. B. Zhu and D. Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” in Proceedings of ECOC 2009, paper 8.5.5. (2009).
  8. IITU-T Series Recommendation G.984.2, “Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification,” Amendment 2 (2008).
  9. S. Grubb, T. Strasser, W.Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. DiGiovanni, “High-Power 1.48 mm cascaded Raman laser in Germano-silicate fibers,” in Proceeding of OAA’1993, paper PD3, (1993).
  10. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
    [CrossRef]
  11. M. H. Eiselt, “Distributed Raman Amplification on fiber with large connector losses,” in Proceeding of OFC2008, paper OWI31 (2006).
  12. J. Bromage, P. J. Winzer, and R.-J. Essiambre, “multiple path interference and its impact on system design”, book chapter 15, p491, “Raman amplifiers for telecommunications” edited by M.N. Islam, (2003)
  13. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “fiber nonlinearities and their impact on transmission systems”, book chapter 10, p196, “Optical fiber telecommunications” IIIA, edited by I. P. Kaminow and T. L. Koch (1997)
  14. D. Nesset and P. Wright, “Raman extender GPON using 1240nm semiconductor quantum-dot lasers”, in Proceeding of OFC2010, paper OThW6 (2010).

2007 (1)

1998 (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Davey, R.

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Fukada, Y.

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Nesset, D.

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Stentz, A. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

Suzuki, K.

IEEE Photon. Technol. Lett. (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998).
[CrossRef]

J. Opt. Netw. (1)

Other (12)

D. Nesset, S. Appathurai and R. Davey, “Extended research GPON using high gain semiconductor optical amplifier,” in Proceeding of OFC2008, paper JWA107 (2008).

P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM PONs,” in Proceeding of OFC2007, paper PDP-13 (2007).

B. Zhu and D. Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” in Proceedings of ECOC 2009, paper 8.5.5. (2009).

IITU-T Series Recommendation G.984.2, “Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification,” Amendment 2 (2008).

S. Grubb, T. Strasser, W.Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. DiGiovanni, “High-Power 1.48 mm cascaded Raman laser in Germano-silicate fibers,” in Proceeding of OAA’1993, paper PD3, (1993).

M. H. Eiselt, “Distributed Raman Amplification on fiber with large connector losses,” in Proceeding of OFC2008, paper OWI31 (2006).

J. Bromage, P. J. Winzer, and R.-J. Essiambre, “multiple path interference and its impact on system design”, book chapter 15, p491, “Raman amplifiers for telecommunications” edited by M.N. Islam, (2003)

F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “fiber nonlinearities and their impact on transmission systems”, book chapter 10, p196, “Optical fiber telecommunications” IIIA, edited by I. P. Kaminow and T. L. Koch (1997)

D. Nesset and P. Wright, “Raman extender GPON using 1240nm semiconductor quantum-dot lasers”, in Proceeding of OFC2010, paper OThW6 (2010).

P. Chanclou, Z. Belfqih, B. Charbonnier, T. Duong, F. Frank, N. Genay, M. Huchard, P. Guignard, L. Guillo, B. Landousies, A. Pizzinat, H. Ramanitra, F. Saliou, S. Durel, A. Othmani, P. Urvoas, M. Ouzzif, and J. Le Masson, “Optical access evolutions and their impact on the metropolitan and home networks,” in Proceedings of ECOC 2008, paper We.3.F.1. (2008).

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5. (2009)

IITU-T Series Recommendation G.984, “Gigabit-capable passive optical networks (GPON),” (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for purely passive reach extended GPON using Raman amplification.

Fig. 2
Fig. 2

(a) OSNR and Raman on-off gain vs the 1310 nm signal power into the feeder fiber; (b) OSNR and Raman on-off gain vs the 1240 nm Raman pump power.

Fig. 3
Fig. 3

The transmitted [in a and b] and received [in c and d] optical spectra for upstream 1310nm signal and downstream 1490nm signal.

Fig. 4
Fig. 4

BER performance for US 1310nm signal and DS 1490nm signal.

Fig. 5
Fig. 5

, BER performance for (a) US 1310nm signal with different total link losses and (b) DS 1490nm signal with various launch powers

Tables (1)

Tables Icon

Table 1 Total link losses

Metrics