Y. Choi, S. Hong, and L. P. Lee, “Shadow Overlap Ion-beam Lithography for Nanoarchitectures,” Nano Lett. 9, 3726–3731 (2009).

[CrossRef]
[PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051–8061 (2009).

[CrossRef]
[PubMed]

P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).

[CrossRef]

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” N. J. Phys. 9, 53 (2007).

[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8, 247 (2006).

[CrossRef]

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).

[CrossRef]

G. Granet and B. Guizal, “Analysis of strip gratings using a parametric modal method by Fourier expansions,” Opt. Commun. 255, 1–11 (2005).

[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry,” J. Opt. A 7, 783–789 (2005).

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17, 2131–2134 (2005).

[CrossRef]

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1034 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

F. Gygi, “Electronic-structure calculations in adaptive coordinates,” Phys. Rev. B 48, 11692–11700 (1993).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry,” J. Opt. A 7, 783–789 (2005).

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).

[CrossRef]

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” N. J. Phys. 9, 53 (2007).

[CrossRef]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

Y. Choi, S. Hong, and L. P. Lee, “Shadow Overlap Ion-beam Lithography for Nanoarchitectures,” Nano Lett. 9, 3726–3731 (2009).

[CrossRef]
[PubMed]

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).

[CrossRef]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051–8061 (2009).

[CrossRef]
[PubMed]

G. Granet and B. Guizal, “Analysis of strip gratings using a parametric modal method by Fourier expansions,” Opt. Commun. 255, 1–11 (2005).

[CrossRef]

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).

[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

F. Gygi, “Electronic-structure calculations in adaptive coordinates,” Phys. Rev. B 48, 11692–11700 (1993).

[CrossRef]

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).

[CrossRef]

Y. Choi, S. Hong, and L. P. Lee, “Shadow Overlap Ion-beam Lithography for Nanoarchitectures,” Nano Lett. 9, 3726–3731 (2009).

[CrossRef]
[PubMed]

T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles,” Opt. Express10, 24–34 (2002).

[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” N. J. Phys. 9, 53 (2007).

[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17, 2131–2134 (2005).

[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

Y. Choi, S. Hong, and L. P. Lee, “Shadow Overlap Ion-beam Lithography for Nanoarchitectures,” Nano Lett. 9, 3726–3731 (2009).

[CrossRef]
[PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8, 247 (2006).

[CrossRef]

B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry,” J. Opt. A 7, 783–789 (2005).

L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1034 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A5, 345–355 (2003).

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

M. Nevière and E. Popov, Light propagation in periodic media: Differential theory and design, (Marcel Dekker, New York, 2003).

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).

[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8, 247 (2006).

[CrossRef]

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).

M. Nevière and E. Popov, Light propagation in periodic media: Differential theory and design, (Marcel Dekker, New York, 2003).

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” N. J. Phys. 9, 53 (2007).

[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17, 2131–2134 (2005).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17, 2131–2134 (2005).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles,” Opt. Express10, 24–34 (2002).

[PubMed]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17, 2131–2134 (2005).

[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).

[CrossRef]
[PubMed]

B. Bai and L. Li, “Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry,” J. Opt. A 7, 783–789 (2005).

G. Granet and J.-P. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A 4, S145–S149 (2002).

L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).

[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1034 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation of stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” N. J. Phys. 9, 53 (2007).

[CrossRef]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8, 247 (2006).

[CrossRef]

Y. Choi, S. Hong, and L. P. Lee, “Shadow Overlap Ion-beam Lithography for Nanoarchitectures,” Nano Lett. 9, 3726–3731 (2009).

[CrossRef]
[PubMed]

G. Granet and B. Guizal, “Analysis of strip gratings using a parametric modal method by Fourier expansions,” Opt. Commun. 255, 1–11 (2005).

[CrossRef]

P. Götz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, “Matched coordinates and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051–8061 (2009).

[CrossRef]
[PubMed]

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007).

[CrossRef]

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).

[CrossRef]

F. Gygi, “Electronic-structure calculations in adaptive coordinates,” Phys. Rev. B 48, 11692–11700 (1993).

[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).

[CrossRef]

F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).

[CrossRef]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking devices, electromagnetic wormholes, and transformation optics,” SIAM Review 51, 3–33 (2009).

[CrossRef]

T. Vallius and M. Honkanen, “Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles,” Opt. Express10, 24–34 (2002).

[PubMed]

M. Nevière and E. Popov, Light propagation in periodic media: Differential theory and design, (Marcel Dekker, New York, 2003).

T. Schuster, J. Ruoff, N. Kerwien, Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A24, 2880–2890 (2007).

[CrossRef]

http://www.gnu.org .

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A5, 345–355 (2003).