Abstract

Dissipative solitons are self-localized states which can exist anywhere in a system with translational symmetry, but in real systems this translational symmetry is usually broken due to parasitic inhomogeneities leading to spatial disorder, pinning the soliton positions. We discuss the effects of semiconductor growth induced spatial disorder on the operation of a cavity soliton laser based on a vertical-cavity surface-emitting laser (VCSEL). We show that a refractive index variation induced by an external, suitably spatially modulated laser beam can be used to counteract the inherent disorder. In particular, it is demonstrated experimentally that the threshold of one cavity soliton can be lowered without influencing other cavity solitons making two solitons simultaneously bistable which were not without control. This proof of principle paves the way to achieve full control of large numbers of cavity solitons at the same time.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [CrossRef] [PubMed]
  2. M. Segev, “Solitons: a universal phenomenon of self-trapped wave packets,” Opt. & Photon. News 13, 27 (2002). Introduction to special issue on Solitons.
    [CrossRef]
  3. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductors,” Nature 419, 699–702 (2002).
    [CrossRef] [PubMed]
  4. N. Akhmediev and A. Ankiewicz, eds., Dissipative solitons, Vol. 661 of Lecture Notes in Physics (Springer, Berlin, 2005).
  5. T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
    [CrossRef]
  6. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
    [CrossRef]
  7. Y. Tanguy, T. Ackemann, and R. J¨ager, “Characteristics of switching in a semiconductor based cavity-soliton laser,” Opt. Express 15, 16773–16780 (2007).
    [CrossRef] [PubMed]
  8. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
    [CrossRef] [PubMed]
  9. Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
    [CrossRef]
  10. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
    [CrossRef] [PubMed]
  11. N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009).
    [CrossRef]
  12. T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
    [CrossRef]
  13. N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” Proc. SPIE 1840, 130–143 (1991).
  14. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
    [CrossRef] [PubMed]
  15. B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001).
    [CrossRef]
  16. C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
    [CrossRef] [PubMed]
  17. F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
    [CrossRef]
  18. S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
    [CrossRef] [PubMed]
  19. P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
    [CrossRef]
  20. R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
    [CrossRef] [PubMed]
  21. E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
    [CrossRef] [PubMed]
  22. E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
    [CrossRef]
  23. B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
    [CrossRef]
  24. I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
    [CrossRef] [PubMed]
  25. M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
    [CrossRef]
  26. H. Pier and E. Kapon, “Photon localization in lattices of coupled vertical-cavity surface-emitting lasers with dimensionalities between one and two,” Opt. Lett. 22, 546–548 (1997).
    [CrossRef] [PubMed]
  27. S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
    [CrossRef]
  28. C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
    [CrossRef]
  29. B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
    [CrossRef]
  30. U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006).
    [CrossRef] [PubMed]
  31. B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
    [CrossRef] [PubMed]
  32. F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
    [CrossRef]
  33. Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
    [CrossRef]
  34. M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
    [CrossRef]
  35. M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
    [CrossRef]
  36. P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
    [CrossRef]
  37. N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
    [CrossRef]
  38. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [CrossRef]
  39. A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
    [CrossRef]
  40. F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
    [CrossRef]

2010 (2)

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

2009 (8)

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
[CrossRef]

T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
[CrossRef]

N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009).
[CrossRef]

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

2008 (10)

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
[CrossRef] [PubMed]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

2007 (2)

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, and R. J¨ager, “Characteristics of switching in a semiconductor based cavity-soliton laser,” Opt. Express 15, 16773–16780 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

2003 (1)

B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
[CrossRef]

2002 (2)

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

M. Segev, “Solitons: a universal phenomenon of self-trapped wave packets,” Opt. & Photon. News 13, 27 (2002). Introduction to special issue on Solitons.
[CrossRef]

2001 (1)

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

2000 (1)

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

1999 (3)

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

1997 (1)

1996 (1)

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

1991 (1)

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” Proc. SPIE 1840, 130–143 (1991).

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Ackemann, T.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009).
[CrossRef]

T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
[CrossRef]

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, and R. J¨ager, “Characteristics of switching in a semiconductor based cavity-soliton laser,” Opt. Express 15, 16773–16780 (2007).
[CrossRef] [PubMed]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

Assanto, G.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

Babushkin, I.

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

Baggett, J.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Barbay, S.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

Barland, B.

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

Barland, S.

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Baumberg, J. J.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Beaudoin, G.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

Bortolozzo, U.

U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006).
[CrossRef] [PubMed]

Caboche, E.

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

Christodoulides, D. N.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

Cleff, C.

C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

Coles, H. J.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Coles, M. J.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Coyle, S.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Denz, C.

C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

Ebeling, K. J.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Elsass, T.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

Firth, W.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

Firth, W. J.

T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
[CrossRef]

A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Ganne, I.

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

Gauthron, K.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

Genevet, P.

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Giudici, M.

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Gomila, D.

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

Grabherr, M.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Gütlich, B.

C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

Hachair, X.

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Hoogland, S.

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Huang, K. F.

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

J¨ager, R.

Jäger, R.

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Jensen, S. J.

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

JGger, R.

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

Kapon, E.

Kreuzer, M.

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

Kuszelewicz, R.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

Lange, W.

B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
[CrossRef]

Lederer, F.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

Loiko, N. A.

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

Lugiato, L. A.

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

Martin, U.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

McIntyre, C.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

Michalzik, R.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Miller, M.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Neubecker, R.

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

Oppo, G.-L.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
[CrossRef]

A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

Paulau, P. V.

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

Pedaci, F.

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Pier, H.

Radwell, N.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009).
[CrossRef]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

Residori, S.

U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006).
[CrossRef] [PubMed]

Rosanov, N. N.

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” Proc. SPIE 1840, 130–143 (1991).

Sagnes, I.

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

Schäpers, B.

B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
[CrossRef]

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

Schulz-Ruhtenberg, M.

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

Schwab, M.

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

Scroggie, A. J.

A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Segev, M.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

M. Segev, “Solitons: a universal phenomenon of self-trapped wave packets,” Opt. & Photon. News 13, 27 (2002). Introduction to special issue on Solitons.
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Silberberg, Y.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

Slekys, G.

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

Sroggie, A.

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

Stegeman, G. I.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Tanguy, Y.

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, and R. J¨ager, “Characteristics of switching in a semiconductor based cavity-soliton laser,” Opt. Express 15, 16773–16780 (2007).
[CrossRef] [PubMed]

Tissoni, G.

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

Tredicce, J.

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

Tredicce, J. R.

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

Tschudi, T.

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

Unold, H. J.

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

Zimmermann, H.

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

Adv. Atom. Mol. Opt. Phys. (1)

T. Ackemann, G.-L. Oppo, and W. J. Firth, “Fundamentals and applications of spatial dissipative solitons in photonic devices,” Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).
[CrossRef]

Appl. Phys. B (4)

T. Elsass, K. Gauthron, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber,” Appl. Phys. B 98, 327–331 (2010).
[CrossRef]

M. Schulz-Ruhtenberg, Y. Tanguy, R. JĠger, and T. Ackemann, “Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers,” Appl. Phys. B 97, 397– 403 (2009).
[CrossRef]

B. Gütlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, and T. Tschudi, “Forcing and control of localized states in optical single feedback systems,” Appl. Phys. B 81, 927–936 (2005).
[CrossRef]

M. Schulz-Ruhtenberg, I. Babushkin, N. A. Loiko, T. Ackemann, and K. F. Huang, “Transverse patterns and length-scale selection in vertical-cavity surface-emitting lasers with a large square aperture,” Appl. Phys. B 81, 945–953 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

F. Pedaci, G. Tissoni, S. Barland, M. Giudici, and J. R. Tredicce, “Mapping local defects of extended media using localized structures,” Appl. Phys. Lett. 93, 111104 (2008).
[CrossRef]

F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Positioning cavity solitons with a phase mask,” Appl. Phys. Lett. 89, 221111 (2006).
[CrossRef]

F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, and R. Jäger, “All-optical delay line using semiconductor cavity solitons,” Appl. Phys. Lett. 92, 011101 (2008).
[CrossRef]

Chaos (1)

B. Gütlich, H. Zimmermann, C. Cleff, and C. Denz, “Dynamic and static position control of optical feedback solitons,” Chaos 17, 037113 (2007).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

N. Radwell, C. McIntyre, A. Sroggie, G.-L. Oppo, W. Firth, and T. Ackemann, “Switching spatial dissipative solitons in a VCSEL with frequency selective feedback,” Eur. Phys. J. D 59, 121–131 (2010).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

B. Schäapers, T. Ackemann, and W. Lange, “Properties of feedback solitons in a single-mirror experiment,” IEEE J. Quantum Electron. 39, 227–237 (2003).
[CrossRef]

N. Radwell and T. Ackemann, “Characteristics of laser cavity solitons in a vertical-cavity surface-emitting laser with feedback from a volume Bragg grating,” IEEE J. Quantum Electron. 45, 1388–1395 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q3. M. Grabherr,M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (1)

C. Denz, S. J. Jensen, M. Schwab, and T. Tschudi, “Stabilization, manipulation and control of transverse optical patterns in a photorefractive feedback system,” J. Opt. B: Quantum Semiclass. Opt. 1, 114–120 (1999).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. Schulz-Ruhtenberg, Y. Tanguy, K. F. Huang, R. Jäger, and T. Ackemann, “Control of the spatial emission structure of broad-area vertical-cavity surface emitting lasers by feedback,” J. Phys. D: Appl. Phys. 42, 055101 (2009).
[CrossRef]

Opt. & Photon. News (1)

M. Segev, “Solitons: a universal phenomenon of self-trapped wave packets,” Opt. & Photon. News 13, 27 (2002). Introduction to special issue on Solitons.
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[CrossRef]

Phys. Rev. A (5)

A. J. Scroggie, W. J. Firth, and G.-L. Oppo, “Cavity-soliton laser with frequency-selective feedback,” Phys. Rev. A 80, 013829 (2009).
[CrossRef]

S. Hoogland, J. J. Baumberg, S. Coyle, J. Baggett, M. J. Coles, and H. J. Coles, “Self-organized patterns and spatial solitons in liquid-crystal microcavities,” Phys. Rev. A 66, 055801 (2002).
[CrossRef]

Y. Tanguy, N. Radwell, T. Ackemann, and R. Jäger, “Characteristics of cavity solitons and drifting excitations in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback,” Phys. Rev. A 78, 023810 (2008).
[CrossRef]

E. Caboche, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Cavity-soliton motion in the presence of device defects,” Phys. Rev. A 80, 053814 (2009).
[CrossRef]

P. Genevet, B. Barland, M. Giudici, and J. R. Tredicce, “Stationary localized structures and pulsing structures in a cavity soliton laser,” Phys. Rev. A 79, 033819 (2009).
[CrossRef]

Phys. Rev. E (1)

P. V. Paulau, D. Gomila, T. Ackemann, N. A. Loiko, and W. J. Firth, “Self-localized structures in vertical-cavity surface-emitting lasers with external feedback,” Phys. Rev. E 78, 016212 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

U. Bortolozzo and S. Residori, “Storage of localized structure matrices in nematic liquid crystals,” Phys. Rev. Lett. 96, 037801 (2006).
[CrossRef] [PubMed]

R. Kuszelewicz, I. Ganne, I. Sagnes, and G. Slekys, “Optical self-organization in bulk and multiquantum well gaalas microresonators,” Phys. Rev. Lett. 84, 6006–6009 (2000).
[CrossRef] [PubMed]

E. Caboche, F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. Tredicce, G. Tissoni, and L. A. Lugiato, “Microresonator Defects as Sources of Drifting Cavity Solitons,” Phys. Rev. Lett. 102, 163901 (2009).
[CrossRef] [PubMed]

S. Barbay, X. Hachair, T. Elsass, I. Sagnes, and R. Kuszelewicz, “Homoclinic snaking in a semiconductor-based optical system,” Phys. Rev. Lett. 101, 253902 (2008).
[CrossRef] [PubMed]

C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902 (2008).
[CrossRef] [PubMed]

I. Babushkin, M. Schulz-Ruhtenberg, N. A. Loiko, K. F. Huang, and T. Ackemann, “Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 100, 213901 (2008).
[CrossRef] [PubMed]

P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Cavity soliton laser based on mutually coupled semiconductor microresonators,” Phys. Rev. Lett. 101, 123905 (2008).
[CrossRef] [PubMed]

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100, 013907 (2008).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. Schäpers, T. Ackemann, and W. Lange, “Characteristics and possible applications of localized structures in an optical pattern–forming system,” Proc. SPIE 4271, 130–137 (2001).
[CrossRef]

N. N. Rosanov, “Switching waves, autosolitons, and parallel digital-analogous optical computing,” Proc. SPIE 1840, 130–143 (1991).

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Other (2)

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductors,” Nature 419, 699–702 (2002).
[CrossRef] [PubMed]

N. Akhmediev and A. Ankiewicz, eds., Dissipative solitons, Vol. 661 of Lecture Notes in Physics (Springer, Berlin, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental Setup. APP: Anamorphic prism pair, BS: Beam splitter, CCD1(2): Charge coupled device camera imaging a near (far) field plane of the VCSEL gain region, EEL: Edge emitting laser, HWP: Half wave plate, ISO: Optical isolator, PBS: Polarizing beam splitter, PD: Photodiode, QWP: Quarter wave plate, SLM: Spatial light modulator, VBG: Volume Bragg grating, VCSEL: Vertical-cavity surface-emitting laser. a) Near field image of the VCSEL showing the aperture of the VCSEL being illuminated by the spatially modulated laser beam from the SLM with input b), the modulation image displayed on the SLM. The white outline in b) indicates the region which is illuminated by the expanded EEL beam.

Fig. 2
Fig. 2

Negative intensity (black corresponds to high intensity) near field images of the VCSEL gain region. Pictures taken at the inset currents. Pictures taken from the CSL system in [11].

Fig. 6
Fig. 6

Light-Current (LI) characteristics for the system before (solid line) and after (dotted line) the application of the SLM beam.

Fig. 3
Fig. 3

Schematic diagram of the proposed CS switching mechanism. λg is the central reflection wavelength of the VBG with the curve denoting the reflection band. λs is the final wavelength of the stable CS, λT is the threshold wavelength and λVCSEL are the cavity modes of the VCSEL. The arrow corresponds to the wavelength shift induced by increasing VCSEL pump current. Wavelengths are only included for rough visualization and are not accurate. The curves on the left are the cavity modes of the VCSEL, with the lines denoting the dispersion relation of threshold wavenumber vs. λ for a plano-planar cavity.

Fig. 4
Fig. 4

a) Sketch of the spatial variation of cavity resonance in a VCSEL. The dashed line represents the situation for an ideal plano-planar cavity. The lower solid line indicates how the resonance might vary in a real laser. Grey dots indicate CS pinning regions (traps). b) Externally injected laser beam intensity modulation required to compensate for the cavity resonance variation shown in a).

Fig. 5
Fig. 5

Reduction in threshold current of a CS induced by the application of a local 980 nm SLM beam for varying distance to the CS peak. Line is experimental data, dashed red curve is a Gaussian fit to the data.

Fig. 7
Fig. 7

Negative intensity (black corresponds to high intensity) near field images of the VCSEL gain region. a) Two CS shown inside the circular VCSEL aperture. b) Application of the SLM beam on top of the right CS. The arrow shows the location of the SLM beam. I = 297 mA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( x , y ) = m λ 0 2 L ( x , y ) ,

Metrics