Abstract

We demonstrate femtosecond ultrashort pulse generation by adding further positive group velocity dispersion (GVD) to compensate for the presence of positive GVD. The idea is based on the integer temporal Talbot phenomenon. The broad Raman sidebands with a frequency spacing of 10.6 THz are compressed to form a train of Fourier-transform-limited pulses by passing the sidebands through a device made of dispersive material of variable thickness.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  2. E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  3. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  4. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22(23), 1793–1795 (1997).
    [CrossRef]
  5. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
    [CrossRef]
  6. J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [CrossRef]
  7. N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
    [CrossRef]
  8. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
    [CrossRef] [PubMed]
  9. M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
    [CrossRef] [PubMed]
  10. T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
    [CrossRef] [PubMed]
  11. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
    [CrossRef]
  12. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
    [CrossRef] [PubMed]
  13. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
    [CrossRef] [PubMed]
  14. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
    [CrossRef] [PubMed]
  15. T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
    [CrossRef] [PubMed]
  16. T. Suzuki, N. Sawayama, and M. Katsuragawa, “Spectral phase measurements for broad Raman sidebands by using spectral interferometry,” Opt. Lett. 33(23), 2809–2811 (2008).
    [CrossRef] [PubMed]

2008 (2)

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

T. Suzuki, N. Sawayama, and M. Katsuragawa, “Spectral phase measurements for broad Raman sidebands by using spectral interferometry,” Opt. Lett. 33(23), 2809–2811 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (2)

2004 (1)

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

2001 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

2000 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

1997 (2)

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22(23), 1793–1795 (1997).
[CrossRef]

1994 (1)

1984 (1)

1975 (1)

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Azana, J.

J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

Bekker, A.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
[CrossRef]

Ferencz, K.

Fischer, B.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

Fork, R. L.

Gordon, J. P.

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Harris, S. E.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[CrossRef]

Hirai, M.

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Katsuragawa, M.

Kien, F. L.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Krausz, F.

Levit, B.

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Martinez, O. E.

Meshulach, D.

Misawa, K.

Muriel, M. A.

J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

Onose, T.

Pearson, D. B.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
[CrossRef]

Sawayama, N.

Silberberg, Y.

Sokolov, A. V.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[CrossRef]

Spielmann, C.

Suzuki, T.

T. Suzuki, N. Sawayama, and M. Katsuragawa, “Spectral phase measurements for broad Raman sidebands by using spectral interferometry,” Opt. Lett. 33(23), 2809–2811 (2008).
[CrossRef] [PubMed]

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Szipocs, R.

Treacy, E. B.

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Turner, E. H.

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
[CrossRef]

Walker, D. R.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yavuz, D. D.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yelin, D.

Yin, G. Y.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yokoyama, K.

Appl. Phys. Lett. (1)

J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, “Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor,” Appl. Phys. Lett. 26(10), 564–566 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azana and M. A. Muriel, “Temporal Self-Imaging Effects: Theory and Application for Multiplying Pulse Repetition Rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of Periodic Optical Pulses Using Temporal Fractional Talbot Effect,” IEEE Photon. Technol. Lett. 16(8), 1855–1857 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (1)

S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55(6), R4019–R4022 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Femtosecond light source for phase-controlled multiphoton ionization,” Phys. Rev. Lett. 87(3), 033402 (2001).
[CrossRef] [PubMed]

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic concept of the phase-dispersion compensation method. (a) Red lines show a discrete spectrum with a frequency spacing of 10.6 THz corresponding to the rotational transition of J = 0 to 2 in parahydrogen. The envelope has Gaussian shape with a width of 20 THz at FWHM. The curves show spectral phases with the factors n = –1 (blue), 0 (black), 1 (red), and 2 (green) in Eq. (2). All the curves cross the horizontal lines (integer multiples of 2π) at the dots where spectral lines exist. (b) The temporal intensity waveform reconstructed from the four different spectral phases in (a).

Fig. 2
Fig. 2

Peak intensity variations of the intensity waveforms constructed from the power spectrum and spectral phases in Fig. 1(a), shown as functions of the added thicknesses of dispersing materials made of (a) fused quartz, (b) borosilicate crown glass (BK7), and (c) sapphire crystal. The discrete spectrum has a Gaussian shape with a width of 20 THz at FWHM, and its initial spectral phase is set to the FTL condition.

Fig. 3
Fig. 3

(a) Dispersion controller composed of a pair of BK7 wedges. The thickness is continuously varied from 10 to 50 mm. (b) Whole experimental setup. Intense, two-color laser pulses are produced from the dual-frequency injection-locked Ti:sapphire laser. The dispersion controller is placed after the collimating lens. The generated sidebands are passed through the dispersion controller, split into two and sent to the measurement systems on the spectral phase and the second harmonic intensity, respectively.

Fig. 4
Fig. 4

(a) Spectral phases and (b) temporal intensity waveforms reconstructed with the spectral phases in (a). Solid, dashed and shaded curves respectively indicate initial, FTL, and observed spectral phases and the corresponding temporal intensity waveforms. The initial spectral phase (solid) was measured without the dispersion controller. The three indicated FTL conditions (dashed) in (a) correspond to n of 0, 1, and 2 in Eq. (2). The observed spectral phases in (a) and the intensity waveforms (shaded) in (b) are shown for the inserted thicknesses of the dispersion controller every 5 mm from 10 to 40 mm.

Fig. 5
Fig. 5

Integrated intensities of the second harmonic generated by the Raman sidebands as a function of the inserted thickness of the dispersion controller. (a) Observed experimentally; (b) calculated with the reconstructed temporal intensity waveforms in Fig. 4(b); and (c) estimated numerically with the initial spectral phase and the refractive indices of BK7 known from the Sellmeier equation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ ( ω 0 + m Δ ω ) = φ 0 + φ 1 ( m Δ ω ) + φ 2 2 ! ( m Δ ω ) 2 + φ h
φ ( ω 0 + m Δ ω ) = 2 n π 2 ! Δ ω 2 ( m Δ ω ) 2 = n m 2 π

Metrics