Abstract

We investigated the phenomenon of orthogonally polarized pulse trapping between a continuous-wave beam and an ultrashort soliton pulse in birefringent fibers both experimentally and numerically. Using pulse trapping and amplification, we demonstrated ultrashort pulse generation from a continuous-wave beam. The generated pulse had a nearly transform-limited sech2-shape and a temporal width of 350 fs. The obtained maximum pulse energy was 300 pJ using a 400 m-long low-birefringence fiber, and the corresponding gain was as large as 41 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef]
  4. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365–L367 (2001).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  6. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
    [CrossRef]
  7. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
    [CrossRef]
  8. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
    [CrossRef]
  9. J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [CrossRef]
  10. N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
    [CrossRef]
  11. N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11(4), 359–365 (2003).
    [CrossRef] [PubMed]
  12. N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13(20), 8128–8135 (2005).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  14. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002).
    [CrossRef]
  15. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002).
    [PubMed]
  16. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
    [CrossRef]
  17. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [CrossRef] [PubMed]
  18. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
    [CrossRef] [PubMed]
  19. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34(2), 115–117 (2009).
    [CrossRef] [PubMed]
  20. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 17(16), 13588–13600 (2009).
    [CrossRef] [PubMed]
  21. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14(18), 1011–1013 (1989).
    [CrossRef] [PubMed]
  22. N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10(5), 256–261 (2002).
    [PubMed]
  23. E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express 18(7), 7323–7330 (2010).
    [CrossRef] [PubMed]
  24. R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic, 2000).

2010

2009

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34(2), 115–117 (2009).
[CrossRef] [PubMed]

S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 17(16), 13588–13600 (2009).
[CrossRef] [PubMed]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

2008

2007

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005

2003

2002

2001

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365–L367 (2001).
[CrossRef]

2000

1999

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[CrossRef]

1989

Birks, T. A.

Chandalia, J. K.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cumberland, B. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Gordon, J. P.

Goto, T.

Hill, S.

Howe, J. V.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Islam, M. N.

Itoh, K.

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

Knight, J. C.

Knox, W. H.

König, F.

Kosinski, S. G.

Kuklewicz, C. E.

Lee, J. H.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Leonhardt, U.

Liu, X.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[CrossRef]

Nishizawa, N.

E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express 18(7), 7323–7330 (2010).
[CrossRef] [PubMed]

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13(20), 8128–8135 (2005).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11(4), 359–365 (2003).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10(5), 256–261 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365–L367 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[CrossRef]

Poole, C. D.

Popov, S. V.

Ranka, J. K.

Rulkov, A. B.

Russell, P. St. J.

Shiraki, E.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Stentz, A. J.

Stone, J. M.

Taylor, J. R.

Travers, J. C.

Ukai, Y.

Wadsworth, W. J.

Windeler, R. S.

Xu, C.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26(6), 358–360 (2001).
[CrossRef]

Appl. Phys. Express

N. Nishizawa and K. Itoh, “Control of optical pulse at visible region using pulse trapping by soliton pulse in photonic crystal fibers,” Appl. Phys. Express 2, 062501 (2009).
[CrossRef]

IEEE J. Quantum Electron.

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. H. Lee, J. V. Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11(3), 325–327 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365–L367 (2001).
[CrossRef]

Nat. Photonics

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[CrossRef]

Opt. Express

N. Nishizawa and T. Goto, “Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,” Opt. Express 10(5), 256–261 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002).
[PubMed]

N. Nishizawa and T. Goto, “Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength,” Opt. Express 11(4), 359–365 (2003).
[CrossRef] [PubMed]

N. Nishizawa, Y. Ukai, and T. Goto, “Ultrafast all optical switching using pulse trapping in birefringent fibers,” Opt. Express 13(20), 8128–8135 (2005).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
[CrossRef] [PubMed]

S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 17(16), 13588–13600 (2009).
[CrossRef] [PubMed]

E. Shiraki and N. Nishizawa, “Wideband amplification using orthogonally polarized pulse trapping in birefringent fibers,” Opt. Express 18(7), 7323–7330 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other

R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses (Kluwer Academic, 2000).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Supplementary Material (3)

» Media 1: MOV (2898 KB)     
» Media 2: MOV (1292 KB)     
» Media 3: MOV (1856 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for pulse generation from cw beam using orthogonally polarized pulse trapping and amplification. ISO, optical isolator; HWP, half wave plate; QWP, quarter wave plate; EDF, Er-doped fiber; LD, laser diode; VOA, variable optical attenuator; LB-PMF, low-birefringence polarization maintaining fiber; PBS, polarizing beam splitter; LPF, low pass filter; POL, polarizer.

Fig. 4
Fig. 4

Spectra at input and output of 300 m-long LB-PMF. (a) Input ultrashort pulse and cw beam, (b) output when only 1080 pJ ultrashort pulse is present, and (c) output when both 13 mW cw beam and 1080 pJ ultrashort pulse are present. The red and blue solid lines represent the beams aligned along the fast and slow axes of LB-PMF, respectively. The dashed line on the generated pulse in (c) represents a sech2 fit. The inset in (a) shows the temporal waveform and the phase of the input pump pulse obtained by SHG-FROG measurement.

Fig. 2
Fig. 2

Numerical evolutions of ultrashort pump pulse and cw beam in the propagation along 16 m-long LB-PMF. Spectrograms for polarization directions aligned along the (a) fast and (b) slow axes of the fiber, respectively (Media 1), and the corresponding (c) temporal waveforms (Media 2) and (d) spectra (Media 3). The blue and red lines in (c) and (d) represent the polarization directions aligned along the fast and slow axes of the fiber, respectively.

Fig. 3
Fig. 3

Numerical results of (a) temporal waveforms and (b) spectra of pump soliton pulse and generated pulse at the 300 m point in the LB-PMF. The blue and red lines represent the polarization directions aligned along the fast and slow axes of the fiber, respectively. The zero position of the time axis is adjusted to the peak point of the pump soliton pulse.

Fig. 5
Fig. 5

Auto-correlation traces of (a) generated pulse alone and (b) twin pulses generated by orthogonally polarized pulse trapping and amplification using the 300 m-long LB-PMF, which corresponds to Fig. 4(c).

Fig. 6
Fig. 6

Variations of output energies of pump soliton pulse and generated pulse from the 300 m-long PMF as functions of (a) initial energy of pump soliton pulse and (b) input power of cw beam. The power of the cw beam was 13 mW in (a), and the energies of the pump pulse and pump soliton pulse were 1080 and 470 pJ in (b). The solid circular (red) and square (blue) symbols represent experimental results for the generated pulse and pump soliton pulse, respectively. The solid lines represent the numerical results.

Fig. 7
Fig. 7

Variation of pulse energy for pump soliton pulse and generated pulse for input pump pulse of 940 pJ (pump soliton pulse, 416 pJ) and cw beam of 13 mW. The solid circular (red) and square (blue) symbols represent the experimental results for generated pulse and pump soliton pulses, respectively. Solid lines represent the numerical results for these pulses. The right vertical axis represents the corresponding gain for the generated pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( ω , τ ) = | A s i g ( t ) | A r e f ( t τ ) | 2 exp ( i ω t ) d t | 2

Metrics