Abstract

We propose a low-loss nanoscale waveguide based on gain-assisted plasmonic resonance metallic nanosphere chain. We demonstrate that by employing a gain material or even an appropriate dielectric for the host environment, waveguide loss can be reduced dramatically. A highly efficient pseudo-orthonormal basis expansion method for obtaining the complex dielectric spectra of the low-loss transmission has been developed. Eigenmode analysis revealed the physical origin of those low-loss waveguiding modes, which opens the possibility to achieve waveguiding other than using conventional dipolar resonances of individual particles. A scheme based on electron beam lithography and chemically synthesized nanoparticles has been proposed to fabricate the device.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
    [CrossRef] [PubMed]
  2. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [CrossRef] [PubMed]
  3. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef]
  5. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett. 32(8), 973–975 (2007).
    [CrossRef] [PubMed]
  6. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
    [CrossRef]
  7. M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
    [CrossRef] [PubMed]
  8. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [CrossRef] [PubMed]
  9. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [CrossRef]
  10. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [CrossRef] [PubMed]
  11. L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006).
    [CrossRef] [PubMed]
  12. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [CrossRef] [PubMed]
  13. V. M. Shalaev, and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science Ltd. 2007), Chap. 5.
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  15. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
    [CrossRef] [PubMed]
  16. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12(10), 1783 (1995).
    [CrossRef]
  17. R. Ruppin, “Electromagnetic energy in dispersive spheres,” J. Opt. Soc. Am. A 15(2), 524 (1998).
    [CrossRef]

2010 (1)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

2009 (2)

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

2004 (1)

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

1998 (2)

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Adegoke, J. A.

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Aussenegg, F. R.

Bahoura, M.

Bashevoy, M.

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Chan, C. T.

Chen, H.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chung, H. Y.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
[CrossRef] [PubMed]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Fedotov, V.

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Fung, K. H.

Huang, L.

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Krenn, J. R.

Leitner, A.

Leung, P. T.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
[CrossRef] [PubMed]

Lin, L. Y.

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Markel, V. A.

Mayy, M.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Noginov, M. A.

Parviz, B. A.

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

Podolskiy, V. A.

Quinten, M.

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Reynolds, K.

Ritzo, B. A.

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Ruppin, R.

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Tan, W.

L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006).
[CrossRef] [PubMed]

Tsai, D. P.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
[CrossRef] [PubMed]

Wang, C. J.

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

Wang, J.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Wang, L.

L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006).
[CrossRef] [PubMed]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Xia, Y.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Zheludev, N.

Zhu, G.

Adv. Mater. (Deerfield Beach Fla.) (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

J. Chem. Phys. (1)

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Dynamic modifications of polarizability for large metallic spheroidal nanoshells,” J. Chem. Phys. 131(12), 124122 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

C. J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, “Subdiffraction photon guidance by quantum-dot cascades,” Nano Lett. 6(11), 2549–2553 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

L. Wang and W. Tan, “Multicolor FRET silica nanoparticles by single wavelength excitation,” Nano Lett. 6(1), 84–88 (2006).
[CrossRef] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Other (1)

V. M. Shalaev, and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science Ltd. 2007), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the Ag nanosphere waveguide. (a) to (d) depict a fabrication based on electron beam lithography. (e) is a 3-dimensional illustration of the device with geometrical parameters included.

Fig. 2
Fig. 2

Complex dielectric spectra of Ag NP waveguide (N = 50) for mode-matching condition with excitation field of different wavelengths (a): 354nm; (b): 442nm; (c): 633nm; (d): 830nm. The solid dots and the hollow dots represent results for LM and TM respectively.

Fig. 3
Fig. 3

Analysis of eigenmodes. The excitation wavelength is 442nm. (a) (b) Normalized dipole moment and phase distribution of LM1, LM2 and TM1. (c) Normalized P 2 of LM3 and comparison with its ideal guiding case. (d) Phase distributions of LM3.

Fig. 4
Fig. 4

(a) Normalized P 2 with different ε at excitation wavelength 442nm for the “butterfly” mode. (b) Normalized P 2 for different dielectric host at different wavelengths. The dielectric constant for TM and LM at 633nm are 5.6143 and 7.3651; and at 830nm are 15.9860 and 15.5893 respectively. At 354nm, the medium is vacuum for both TM and LM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p n = α ( ω ) m n ( ( 1 - i ω | n m | d c ) 3 r ^ · p m r ^ p m | n m | 3 d 3 + ω 2 c 2 p m r ^ · p m r ^ | n m | d ) exp ( i ω | n m | d / c )
M n , m n = A a 3 d 3 ( 1 i ω | n m | d c B ω 2 | n m | 2 d 2 c 2 ) exp ( i ω | n m | d / c ) | n m | 3 , M n , n = a 3 / α ( ω ) ,
[ a 3 / α ( ω ) ] P n = 1 n a n b n | n = | 1 , 0...0
P = n = 1 n { n ¯ | 1 , 0...0 / [ a 3 / α ( ω ) b n ] } | n

Metrics