Abstract

We report on the development of a tunable Raman fiber ring laser especially designed for the investigation of the 3Σg1Δg transition of molecular oxygen. Singlet oxygen (1Δg) is a reactive species of importance in the fields of biology, photochemistry, and phototherapy. Tunability of the Raman fiber ring laser is achieved without the use of an intracavity tunable bandpass filter and the laser thus achieves a slope efficiency only obtained up to now in Perot-Fabry cavities. A measurement of the action spectrum of a singlet oxygen trap is made in air-saturated ethanol and acetone to demonstrate the practical application of the tunable Raman fiber ring laser for the investigation of the 3Σg1Δg transition of molecular oxygen.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
    [CrossRef]
  2. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 μm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
    [CrossRef] [PubMed]
  3. A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
    [CrossRef]
  4. D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett. 30, 2982–2984 (2005).
    [CrossRef] [PubMed]
  5. Aguergaray Claude, Mchin David, Kruglov Vladimir, and et John D. Harvey, “Experimental realization of a Mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680 (2010).
    [CrossRef]
  6. E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
    [CrossRef]
  7. A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
    [CrossRef]
  8. A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
    [CrossRef]
  9. P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37, 491–492 (2001).
    [CrossRef]
  10. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
    [CrossRef] [PubMed]
  11. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15, 8438–8443 (2007).
    [CrossRef] [PubMed]
  12. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
    [CrossRef]
  13. D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).
  14. A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
    [CrossRef] [PubMed]
  15. C. Long and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
    [CrossRef]
  16. A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
    [CrossRef]
  17. P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
    [CrossRef]
  18. A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
    [CrossRef]
  19. A.A. Krasnovsky and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions : the photoreaction action spectrum and spectroscopic parameter of the 1Δg←3Σg− transition in oxygen molecules” Chem. Phys. Lett. 400, 531–535 (2004).
    [CrossRef]
  20. A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).
  21. A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
    [CrossRef]
  22. A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
    [CrossRef]
  23. R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
    [CrossRef]
  24. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085–1.175-μm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
    [CrossRef]
  25. G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33, 2014–2016 (2008).
    [CrossRef] [PubMed]
  26. Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
    [CrossRef]
  27. Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
    [CrossRef] [PubMed]
  28. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
    [CrossRef]

2010 (2)

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

Aguergaray Claude, Mchin David, Kruglov Vladimir, and et John D. Harvey, “Experimental realization of a Mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680 (2010).
[CrossRef]

2008 (5)

G. Qin, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Widely tunable ring-cavity tellurite fiber Raman laser,” Opt. Lett. 33, 2014–2016 (2008).
[CrossRef] [PubMed]

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

2007 (2)

2006 (2)

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

A.A. Krasnovsky and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions : the photoreaction action spectrum and spectroscopic parameter of the 1Δg←3Σg− transition in oxygen molecules” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

2003 (3)

D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

2001 (2)

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

2000 (1)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

1999 (1)

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

1998 (2)

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

1991 (1)

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

1977 (2)

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085–1.175-μm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

1973 (1)

C. Long and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Al Jghgami, I.F.

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

Ambartzumian, R. V.

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

A.A. Krasnovsky and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions : the photoreaction action spectrum and spectroscopic parameter of the 1Δg←3Σg− transition in oxygen molecules” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Babin, S. A.

Bartoschek, A.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Bélanger, E.

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

Bernier, M.

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

Bouteiller, J.-C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Bubnov, M. M.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Byteva, I.M.

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

Chang, D.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

Chestnut, D. A.

Chung, Y.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Churkin, D. V.

Claude, Aguergaray

Côté, D.

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

Cumberland, B. A.

David, Mchin

Dianov, E. M.

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 μm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
[CrossRef] [PubMed]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Dolmans, D. E.J.G.J.

D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).

Dougherty, T. J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Dronov, A. G.

Drozdov, N.N.

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

Drozdova, N. N.

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Eggleton, B. J

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Egorova, O. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Faucher, D.

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

Feder, K.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

French, W. G.

Fukumura, D.

D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).

Gapontsev, D. V.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Gomer, C. J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Goncharov, S. E.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

Griesbeck, A. G.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Gur’yanov, A. N.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Guy, M. J.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

Han, Y.

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Harvey, et John D.

Headley, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Henderson, B. W.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Horn, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Ivanov, A. V.

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

Ivanov, V.

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Jain, R. K.

D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Jeong, M. Y.

Jori, G.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Kablukov, S. I.

Kaiser, P.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Kang, J. U.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Kearns, D. R.

C. Long and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Kessel, D.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Khopin, V. F.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Kim, C.

Y. Han, S. B. Lee, C. Kim, and M. Y. Jeong, “Voltage-tuned multiwavelength Raman ring laser with high tunability based on a single fiber Bragg grating,” Appl. Opt. 47, 6099–6102 (2008).
[CrossRef] [PubMed]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Korbelik, M.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Krasnovsky, A. A.

A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Krasnovsky, A.A.

A.A. Krasnovsky and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions : the photoreaction action spectrum and spectroscopic parameter of the 1Δg←3Σg− transition in oxygen molecules” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

Kurkov, A. S.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Laptev, A. Yu.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Lee, S. B.

Liao, M.

Lin, C.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085–1.175-μm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

Long, C.

C. Long and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

Losev, A.P.

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

Malone, T. G.

Medvedkov, O. I.

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 μm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32, 1848–1850 (2007).
[CrossRef] [PubMed]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Miara, C.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Moan, J.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Mori, A.

Neudrfl, J.

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Nichiporovich, I.N.

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

Ogilby, P. R.

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

Ohishi, Y.

Paek, U.

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

Paramonov, V. M.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Peng, Q.

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Pershina, E. V.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Platonov, N. S.

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

Pleibel, W.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Popov, S. V.

Qin, G.

Reeves-Hall, P. C.

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

Roumbal, Ya. V.

A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

Rulkov, A. B.

Rybakov, M. A.

Semenov, S. L.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Steinvurzel, P.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Stolen, R. H.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, “A cw tunable near-infrared (1.085–1.175-μm) Raman oscillator,” Opt. Lett. 30, 96–97 (1977).
[CrossRef]

Strizhakov, A. A.

A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

Suzuki, T.

Taylor, J. R.

Umnikov, A. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Vallée, R.

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

Vasil’ev, S. A.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Vasiliev, S. A.

Vechkanov, N. I.

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Vladimir, Kruglov

Vlasov, A. A.

Vyatkin, M. Y.

Yusupov, A. S.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

Zalevskii, I. D.

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

Acc. Chem. Res. (1)

P. R. Ogilby, “Solvent Effects on the radiative transitions of singlet oxygen,” Acc. Chem. Res. 32, 512–519 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, “A high-efficiency tunable CW Raman oscillator,” Appl. Phys. Lett. 30, 162–164 (1977).
[CrossRef]

Biochemistry (Moscow) (1)

A. A. Krasnovsky, N. N. Drozdova, V. Ivanov, and R. V. Ambartzumian, “Activation of Molecular Oxygen by Infrared Laser Radiation in Pigment-Free Aerobic Systems,” Biochemistry (Moscow) 68, 963–966 (2003).
[CrossRef]

Chem. Phys. Lett. (4)

A.A. Krasnovsky and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions : the photoreaction action spectrum and spectroscopic parameter of the 1Δg←3Σg− transition in oxygen molecules” Chem. Phys. Lett. 400, 531–535 (2004).
[CrossRef]

A.P. Losev, I.N. Nichiporovich, I.M. Byteva, N.N. Drozdov, and I.F. Al Jghgami, “The perturbing effect of solvents on the luminescence rate constant of singlet molecular oxygen,” Chem. Phys. Lett. 18145–50 (1991).
[CrossRef]

A. A. Krasnovsky, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1O2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
[CrossRef]

A. A. Krasnovsky, Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1O2 (1Δg) production upon direct laser excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
[CrossRef]

Chinese Opt. Lett. (1)

A. A. Krasnovsky, N. N. Drozdova, Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Biophotonics of molecular oxygen: activation efficiencies upon direct and photosensitized excitation,” Chinese Opt. Lett. 3, S1–S4 (2005).

Electron. Lett. (1)

P. C. Reeves-Hall and J. R. Taylor, “Wavelength tunable CW Raman fibre ring laser operating at 1486–1551 nm,” Electron. Lett. 37, 491–492 (2001).
[CrossRef]

Electronics Lett. (1)

S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre ring laser operating at 1.24 μm,” Electronics Lett. 34, 680–681 (1998).
[CrossRef]

IEEE J. Lightwave Technol. (1)

E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” IEEE J. Lightwave Technol. 26, 1696–1701 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J Eggleton, “Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening,” IEEE Photon. Technol. Lett. 13, 1286–1288 (2001).
[CrossRef]

Y. Han, C. Kim, J. U. Kang, U. Paek, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photon. Technol. Lett. 15, 383–385 (2003).
[CrossRef]

J. Chem. Phys. (1)

C. Long and D. R. Kearns, “Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen,” J. Chem. Phys. 59, 5729–5736 (1973).
[CrossRef]

J. Nat. Canc. Inst. (1)

T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic Therapy”, J. Nat. Canc. Inst. 90, 889–905 (1998).
[CrossRef]

Laser Physics (2)

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, I. D. Zalevskii, and S. E. Goncharov, “Fiber Raman laser at 1450 nm for medical applications,” Laser Physics 18, 1234–1237 (2008).
[CrossRef]

A. S. Yusupov, S. E. Goncharov, I. D. Zalevskii, V. M. Paramonov, and A. S. Kurkov, “Raman fiber laser for the drug-free photodynamic therapy,” Laser Physics 20, 357–359 (2010).
[CrossRef]

Nature (1)

D. E.J.G.J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer”, Nature 3, 380–387 (2003).

Opt. Express (3)

Opt. Lett. (4)

Photochem. Photobiol. (1)

A. G. Griesbeck, A. Bartoschek, J. Neudrfl, and C. Miara, “Stereoselectivity in Ene Reactions with 1O2:Matrix Effects in Polymer Supports, Photo-oxygenation of Organic Salts and Asymetric Synthesis”, Photochem. Photobiol. 82, 1233–1240 (2006).
[CrossRef] [PubMed]

Quantum Elec. (1)

A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emiting in the 1.24–1.34μm range,” Quantum Elec. 30, 791–793 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the tunable Raman fiber ring laser. PC: Polarization Controller

Fig. 2
Fig. 2

(a) Power characteristics of the tunable Raman fiber ring laser measured at the output fiber coupler. The pump wavelength is 1085 nm and the Stokes wavelength is 1268 nm. Filled circles : total Stokes power, empty circles : transmitted pump power. (b) Power spectra of the forward-propagating Stokes wave at incident pump powers of 4.9 W, 5.6 W and 7 W. The pump wavelength is 1087 nm and the Stokes wavelength is ∼ 1270 nm.

Fig. 3
Fig. 3

(a) TRFRL generation wavelength as a function of the wavelength of the pump laser. (b) TRFRL output power as a function of its wavelength for an incident pump power of ∼ 5.3 Watt.

Fig. 4
Fig. 4

Normalized action spectra on DPIBF dissolved in air-saturated ethanol (filled circles) and in acetone (empty circles) upon irradiation of the TRFRL between 1247 nm and 1289 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ln ( P 0 P f ) = ɛ ( [ T ] 0 [ T ] ) . L
V r = [ T ] 0 [ T ] Δ t

Metrics