Abstract

The parametric optimization of Digital Backward Propagation (DBP) algorithm for mitigating fiber transmission impairments is proposed and numerically demonstrated for phase modulated signals in mixed-optical fiber transmission link. The optimization of parameters i.e. dispersion (D) and non-linear coefficient (γ) offer improved eye-opening (EO). We investigate the optimization of iterative and non-iterative symmetric split-step Fourier method (S-SSFM) for solving the inverse non-linear Schrödinger equation (NLSE). Optimized DBP algorithm, with step-size equal to fiber module length i.e. one calculation step per fiber span for obtaining higher computational efficiency, is implemented at the receiver as a digital signal processing (DSP) module. The system performance is evaluated by EO-improvement for diverse in-line compensation schemes. Using computationally efficient non-iterative symmetric split-step Fourier method (NIS-SSFM) upto 3.6dB referenced EO-improvement can be obtained at 6dBm signal launch power by optimizing and modifying DBP algorithm parameters, based on the characterization of the individual fiber types, in mixed-optical fiber transmission link.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Foschini, P. Winzer, G. Kramer, and E. Burrows, “The Capacity of Fiber-Optic Communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuE1.
  2. X. Liu, F. Buchali, and R. Tkach, “Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [CrossRef]
  3. S. L. Jansen, et al., “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology Journalism 24(1), 54–64 (2006).
    [CrossRef]
  4. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express 16(3), 1923–1928 (2008).
    [CrossRef] [PubMed]
  5. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  6. E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010).
    [CrossRef]
  7. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
    [CrossRef]
  8. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
    [CrossRef]
  9. G. Goldfarb and G. Li, “Demonstration of fibre impairment compensation using split-step infinite-impulse response filtering method,” Electron. Lett. 44(13), 814–816 (2008).
    [CrossRef]
  10. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1(2), 279–307 (2009).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995, 2nd edn).
  12. R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
    [CrossRef]
  13. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  14. E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Effects using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  15. E. Ip, A. Pak Tao Lau, D. J. F. Barros, and J. M. Kahn, “Compensation of Dispersion and Nonlinearity in WDM Transmission Using Simplified Digital Backpropagation,” IEEE/LEOS Summer Topical Meetings, 2008 Digest of the.123–124, 21–23 2008.
  16. F. Yaman and Guifang Li, “Guifang Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
    [CrossRef]
  17. Millar, D. S.; Makovejs, S.; Mikhailov, V.; Killey, R. I.; Bayvel, P.; Savory, S. J. “Experimental Comparison of Nonlinear Compensation in Long-Haul PDM-QPSK Transmission at 42.7 and 85.4 Gb/s”, ECOC 09, 9.4.4, 2009.
  18. C. Y Lin, “Michael Holtmannspoeter; M. Rameez Asif; Bernhard Schmauss; “Compensation of Transmission Imapirments by Digital Backward Propagation for Different Link Designs,” ECOC (to be published).
  19. S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
    [CrossRef]
  20. C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).
  21. G. P. Agrawal, Lightwave Technology, Telecommunication Systems (John Wiley and Sons, Inc. 2005).

2010

E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010).
[CrossRef]

2009

2008

2007

2006

S. L. Jansen, et al., “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology Journalism 24(1), 54–64 (2006).
[CrossRef]

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

2005

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

2004

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Bayvel, P.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Buchali, F.

Burrows, E. C.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Chen, X.

Cvecek, K.

Duthel, T.

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Essiambre, R.-J.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Fludger, C. R. S.

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Gavioli, G.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Goldfarb, G.

G. Goldfarb and G. Li, “Demonstration of fibre impairment compensation using split-step infinite-impulse response filtering method,” Electron. Lett. 44(13), 814–816 (2008).
[CrossRef]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[CrossRef] [PubMed]

Guifang Li,

F. Yaman and Guifang Li, “Guifang Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

Hecker-Denschlag, N.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Ip, E.

Ip, E. M.

E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010).
[CrossRef]

Jansen, S. L.

S. L. Jansen, et al., “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology Journalism 24(1), 54–64 (2006).
[CrossRef]

Jonas Geyer, C.

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Kahn, J. M.

E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010).
[CrossRef]

E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Effects using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[CrossRef]

Killey, R. I.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Kim, I.

Lee, W.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Leuchs, G.

Li, G.

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1(2), 279–307 (2009).
[CrossRef]

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[CrossRef] [PubMed]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

G. Goldfarb and G. Li, “Demonstration of fibre impairment compensation using split-step infinite-impulse response filtering method,” Electron. Lett. 44(13), 814–816 (2008).
[CrossRef]

Li, X.

Lin, C. Y

C. Y Lin, “Michael Holtmannspoeter; M. Rameez Asif; Bernhard Schmauss; “Compensation of Transmission Imapirments by Digital Backward Propagation for Different Link Designs,” ECOC (to be published).

Liu, X.

Ludwig, R.

Mateo, E.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Onishchukov, G.

Pachnicke, S.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Reichert, J.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Savory, S. J.

Schmauss, B.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express 16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Schubert, C.

Schulien, C.

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Spalter, S.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Sponsel, K.

Stephan, C.

Taylor, M. G.

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

Tkach, R.

Voges, E.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

Wang, X. Q.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

White, C. A.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Winzer, P. J.

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Yaman, F.

F. Yaman and Guifang Li, “Guifang Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon.

ECOC

C. Y Lin, “Michael Holtmannspoeter; M. Rameez Asif; Bernhard Schmauss; “Compensation of Transmission Imapirments by Digital Backward Propagation for Different Link Designs,” ECOC (to be published).

C. Jonas Geyer, C. R. S. Fludger, T. Duthel, C. Schulien, and B. Schmauss; “Simple Automatic Nonlinear Compensation with Low Complexity for Implementation in Coherent Receivers,” ECOC (to be published).

Electron. Lett.

G. Goldfarb and G. Li, “Demonstration of fibre impairment compensation using split-step infinite-impulse response filtering method,” Electron. Lett. 44(13), 814–816 (2008).
[CrossRef]

IEEE Photon. J.

F. Yaman and Guifang Li, “Guifang Li, “Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation,” IEEE Photon. J. 1(2), 144–152 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Pachnicke, N. Hecker-Denschlag, S. Spalter, J. Reichert, and E. Voges, “Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks,” IEEE Photon. Technol. Lett. 16(5), 1400–1402 (2004).
[CrossRef]

R.-J. Essiambre, P. J. Winzer, W. Lee, C. A. White, E. C. Burrows, and X. Q. Wang, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental Demonstration of Fiber Impairment Compensation Using the Split-Step Finite-Impulse-Response Filtering Method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

J. Lightwave Technol.

Lightwave Technology Journalism

S. L. Jansen, et al., “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” Lightwave Technology Journalism 24(1), 54–64 (2006).
[CrossRef]

E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” Lightwave Technology Journalism 28(4), 502–519 (2010).
[CrossRef]

Opt. Express

Other

G. P. Agrawal, Lightwave Technology, Telecommunication Systems (John Wiley and Sons, Inc. 2005).

Millar, D. S.; Makovejs, S.; Mikhailov, V.; Killey, R. I.; Bayvel, P.; Savory, S. J. “Experimental Comparison of Nonlinear Compensation in Long-Haul PDM-QPSK Transmission at 42.7 and 85.4 Gb/s”, ECOC 09, 9.4.4, 2009.

E. Ip, A. Pak Tao Lau, D. J. F. Barros, and J. M. Kahn, “Compensation of Dispersion and Nonlinearity in WDM Transmission Using Simplified Digital Backpropagation,” IEEE/LEOS Summer Topical Meetings, 2008 Digest of the.123–124, 21–23 2008.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995, 2nd edn).

R. Essiambre, G. Foschini, P. Winzer, G. Kramer, and E. Burrows, “The Capacity of Fiber-Optic Communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuE1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of digital backward propagation (DBP) in mixed-optical fiber transmission link.

Fig. 2
Fig. 2

Modification of digital backward propagation (DBP) algorithm parameters in mixed-optical fiber transmission link by: (a) individual optimization method (IOM); (b) serial optimization method (SOM).

Fig. 3
Fig. 3

Numerical model of phase encoded mixed-optical fiber transmission.

Fig. 4
Fig. 4

Signal flow-chart for digital post-processing of received data.

Fig. 5
Fig. 5

EO gain due to DBP (dB) map as a function of dispersion DDBP and non-linear coefficient γDBP for standalone transmission over 800km at 6dBm launch power for: SMF with dispersion mapping: (a) post-compensation; (b) under-compensation; (c) no-compensation, NZDSF with dispersion mapping: (d) post-compensation; (e) under-compensation; (f) no-compensation.

Fig. 6
Fig. 6

EO gain due to DBP (dB) map as a function of non-linear coefficient γDBP,SMF and non-linear coefficient γDBP,NZDSF for mixed-optical fiber transmission link (series of SMF + NZDSF) over 800km at 6dBm launch power with dispersion mapping: (a) post-compensation; (b) under-compensation; (c) no-compensation.

Fig. 7
Fig. 7

Comparison of the performance of optimized DBP algorithm (IS-SSFM) for 10Gbit/s RZ-DQPSK transmission over 800km mixed-optical fiber transmission link (series of SMF + NZDSF): (a) EO gain due to DBP (dB); (b) referenced EO-improvement (dB).

Fig. 8
Fig. 8

Comparison of the performance of optimized DBP algorithm (NIS-SSFM) for 10Gbit/s RZ-DQPSK transmission over 800km mixed-fiber optical link (series of SMF + NZDSF): (a) EO gain due to DBP (dB); (b) referenced EO-improvement (dB).

Fig. 9
Fig. 9

Comparison of the performance of optimized DBP algorithm (NIS-SSFM) for 10Gbit/s RZ-DQPSK transmission over 800km mixed-optical fiber link for different fiber spans configurations: (a) and (b) post-compensation; (c) and (d) under-compensation; (e) and (f) no-compensation

Tables (1)

Tables Icon

Table 1 Physical parameters and types of optical fibers used for numerical evaluation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E z = j γ | E | 2 + ( j β 2 2 2 t 2 α 2 ) E = ( N ^ + D ^ ) E
N ^ = j γ | E | 2 , D ^ = j β 2 2 2 t 2 α 2
E z = ( N ^ D ^ ) E
N ^ = j γ | E | 2 , D ^ = j β 2 2 2 t 2 + α 2
E ( z + h , t ) = exp ( h ( N ^ + D ^ ) ) E ( z , t ) )
E ( z + h , t ) = exp ( h D ^ 2 ) exp ( h N ^ ) exp ( h D ^ 2 ) E ( z , t )
E z = ( N ^ o p t i m i z e d D ^ o p t i m i z e d ) E
E O g a i n d u e t o D B P ( d B ) = 10 log 10 [ E O D B P ( P C , U C , N C ) E O F P ( P C , U C , N C ) ]
r e f e r e n c e d E O i m p r o v e m e n t ( d B ) = 10 log 10 [ E O D B P ( P C , U C , N C ) E O F P ( N C ) ]

Metrics