Abstract

A Q-switched laser based system for broadband absorption spectroscopy in the range of 1390-1740 nm (7200-5750 cm−1) has been developed and tested. In the spectrometer the 1064 nm light of a 25 kHz repetition-rate micro-chip Nd:YAG laser is directed into a photonic crystal fiber to produce a short (about 2 ns) pulse of radiation in a wide spectral range. This radiation is passed through a 25 km long dispersive single-mode fiber in order to spread the respective wavelengths over a time interval of about 140 ns at the fiber output. This fast swept-wavelength light source allows to record gas absorption spectra by temporally-resolved detection of the transmitted light power. The realized spectral resolution is about 2 cm−1. Examples of spectra recorded in a cell with CO2:CH4:N2 gas mixtures are presented. An algorithm employed for the evaluation of molar concentrations of different species from the spectra with non-overlapping absorption bands of mixture components is described. The uncertainties of the concentration values retrieved at different acquisition times due to the required averaging are evaluated. As an example, spectra with a signal-to-noise ratio large enough to provide species concentrations with a relative error of 5% can be obtained in real time at a millisecond time scale. Potentials and limitations of this technique are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable Diode Laser Sensing and Combustion Control,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds., (Taylor and Francis, New York 2002). pg. 479.
  2. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, and V. Ebert, “Distributed feedback diode laser spectrometer at 2.7 µm for sensitive, spatially resolved H2O vapor detection,” Appl. Opt. 48(4), B172–B182 (2009).
    [CrossRef] [PubMed]
  3. W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, and J. P. Burrows, “Lightweight diode laser spectrometer CHILD (Compact High-altitude iN-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44(1), 91–102 (2005).
    [PubMed]
  4. W. B. Whitten, “Time-of-flight optical spectrometry with fiber optic waveguides,” Anal. Chem. 54(7), 1026–1028 (1982).
    [CrossRef]
  5. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
    [CrossRef]
  6. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
    [CrossRef]
  7. J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004).
    [CrossRef]
  8. J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
    [CrossRef]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
    [CrossRef] [PubMed]
  10. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
    [CrossRef]
  11. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  13. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
    [CrossRef]
  14. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [CrossRef]
  15. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
    [CrossRef]
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
    [CrossRef]
  17. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
    [CrossRef]
  18. C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
    [CrossRef]
  19. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional effects on molecular spectra laboratory experiments and models, consequences for applications (Amsterdam: Elsevier; 2008).
  20. H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
    [CrossRef]

2010 (1)

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

2009 (1)

2008 (5)

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

2007 (2)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2005 (2)

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, and J. P. Burrows, “Lightweight diode laser spectrometer CHILD (Compact High-altitude iN-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44(1), 91–102 (2005).
[PubMed]

2004 (3)

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[CrossRef]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[CrossRef] [PubMed]

2002 (1)

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[CrossRef]

1999 (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

1982 (1)

W. B. Whitten, “Time-of-flight optical spectrometry with fiber optic waveguides,” Anal. Chem. 54(7), 1026–1028 (1982).
[CrossRef]

Aben, I.

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Bhushan, A. S.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

Biancalana, F.

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Birks, T.

Brown, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Brown, L. R.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Burrows, J. P.

Butz, A.

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Carleer, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chackerianjr, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[CrossRef]

Chrisbenner, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Coppinger, F.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

Coudert, L.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Ebert, V.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Fernholz, T.

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Frankenberg, C.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Giesemann, C.

Gurlit, W.

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[CrossRef]

Hartmann, J.-M.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

Hase, F.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Hult, J.

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Jalali, B.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[CrossRef]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

Joly, N.

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

Kelkar, P. V.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

Knight, J.

Pasti, I.

Pieruschka, R.

Platt, U.

Rascher, U.

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Russell, P.

Sanders, S. T.

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[CrossRef]

Schurr, U.

Solli, D. R.

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Spietz, P.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Toon, G.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

Tran, H.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

Wadsworth, W.

Wagner, S.

Walewski, J. W.

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004).
[CrossRef]

Warneke, T.

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Watt, R. S.

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

Whitten, W. B.

W. B. Whitten, “Time-of-flight optical spectrometry with fiber optic waveguides,” Anal. Chem. 54(7), 1026–1028 (1982).
[CrossRef]

Wolfrum, J.

Wunderle, K.

Zimmermann, R.

Anal. Chem. (1)

W. B. Whitten, “Time-of-flight optical spectrometry with fiber optic waveguides,” Anal. Chem. 54(7), 1026–1028 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (4)

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[CrossRef]

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Atmos. Chem. Phys. (1)

C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008).
[CrossRef]

Electron. Lett. (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005).
[CrossRef]

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Opt. Express (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (2)

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable Diode Laser Sensing and Combustion Control,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds., (Taylor and Francis, New York 2002). pg. 479.

J.-M. Hartmann, C. Boulet, and D. Robert, Collisional effects on molecular spectra laboratory experiments and models, consequences for applications (Amsterdam: Elsevier; 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of the spectrometer. (b) Optical spectrum and optical power over time at different points in the set-up.

Fig. 2a
Fig. 2a

Reference, Ir (t), and signal, Is (t-t0 ), waveforms averaged over 100 pulses. The signal waveform contains some weak CO2 and CH4 absorption bands on its envelope. Both waveforms show absorption lines of H2O present in the open air.

Fig. 3
Fig. 3

Calculated and measured (800 pulses averaged) spectra of CH4 and CO2 absorption bands. The calculated spectrum was convolved with a Gaussian instrumental function of 2.1 cm−1 width.

Fig. 2b
Fig. 2b

Calibration function to convert time delays into wavenumbers and wavelengths.

Fig. 4
Fig. 4

Dependence of the accuracy of species concentration retrievals as a function of the spectrum acquisition time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I s ( t t 0 ) = I r ( t ) ε ( t ) exp ( k i c i σ i ( ν ( t ) ) ) .
T exp ( t ) = 1 ε ( t ) ( I s ( t t 0 ) I r ( t ) ) .
F = ( n T c o n v ( t n ) n I s ( t n t 0 ) I r ( t n ) 1 ε ( t n ) ) 2

Metrics