Abstract

We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark “soliton-like” pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909 (2006).
    [Crossref] [PubMed]
  2. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
    [Crossref]
  3. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
    [Crossref]
  4. B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nature Photon. 4, 307 – 311 (2010).
    [Crossref]
  5. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
    [Crossref] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref] [PubMed]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
    [Crossref] [PubMed]
  8. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
    [Crossref]
  9. P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
    [Crossref]
  10. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
    [Crossref] [PubMed]
  11. S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
    [Crossref]
  12. P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
    [Crossref]
  13. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Scie. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  14. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [Crossref] [PubMed]
  15. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
    [Crossref] [PubMed]
  16. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett. 34, 3902–3904 (2009).
    [Crossref] [PubMed]
  17. M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18, 13385 (2010).
    [Crossref] [PubMed]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, “Vector dark domain wall solitons in a fiber ring laser,” Opt. Express 18, 4428–4433 (2010).
    [Crossref] [PubMed]
  19. M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
    [Crossref]
  20. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
    [Crossref]
  21. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
    [Crossref]
  22. M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
    [Crossref]
  23. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
    [Crossref] [PubMed]
  24. S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
    [Crossref] [PubMed]
  25. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.
  26. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [Crossref]
  27. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14, 935 (1997).
    [Crossref]
  28. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
    [Crossref]
  29. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
    [Crossref]
  30. T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
    [Crossref]

2010 (3)

2009 (2)

2008 (2)

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26, 73–78 (2008).
[Crossref]

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
[Crossref]

2006 (3)

2005 (2)

2004 (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

2002 (5)

2001 (5)

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[Crossref]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
[Crossref]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Scie. Instrum. 71, 1929–1960 (2000).
[Crossref]

1998 (1)

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

1997 (1)

1995 (1)

1989 (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

Abakoumov, D.

Akhmediev, N.

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[Crossref]

Alasia, D.

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
[Crossref]

Andrekson, P. A.

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Bao, Q. L.

Baxter, G.

Belhache, F.

Bolger, J. A.

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

Buckley, J.

Buckley, J. R.

Chang, G.

Chestnut, D. A.

Chong, A.

Christiansen, P. L.

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Chu, S. T.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Clausen, C. B.

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Clement, T. S.

Coen, S.

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
[Crossref]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref] [PubMed]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[Crossref]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

Cristiani, I.

Cundiff, S. T.

M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18, 13385 (2010).
[Crossref] [PubMed]

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[Crossref]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
[Crossref]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

de Matos, C. J. S.

Deparis, O.

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

Divin, C. J.

Dong, X.

Dudley, J. M.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Eggleton, B. J.

Emplit, P.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[Crossref]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Feng, M.

Fontana, F.

Franco, P.

Frisken, S.

Galvanauskas, A.

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

Gong, Y.

Grelu, P.

Gutty, F.

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
[Crossref]

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

Haelterman, M.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[Crossref]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
[Crossref]

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Honzatko, P.

Ilday, F. O.

Kane, D. J.

Kanka, J.

Knize, R. J.

Kubota, H.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

Li, F.

Little, B. E.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Liu, C.-H.

Loh, K. P.

Lu, C.

Midrio, M.

Millot, G.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

Mirin, R. P.

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Nakazawa, M.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
[Crossref]

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

Norris, T. B.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nature Photon. 4, 307 – 311 (2010).
[Crossref]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Peterka, P.

Pitois, S.

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

Poole, S.

Quiroga-Teixeiro, M.

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Renninger, W.

Rodriguez, G.

Roelens, M. A. F.

Romagnoli, M.

Schröder, J.

Shum, P.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Silverman, K. L.

Sorensen, M. P.

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Sosnowski, T.

Soto-Crespo, J. M.

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[Crossref]

Soto-Crespo, J.-M.

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

Sylvestre, T.

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
[Crossref]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref] [PubMed]

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[Crossref]

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

Tang, D. Y.

Taylor, A. J.

Taylor, J. R.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nature Photon. 4, 307 – 311 (2010).
[Crossref]

Vanholsbeeck, F.

Vo, T. D.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Scie. Instrum. 71, 1929–1960 (2000).
[Crossref]

Williamson, S. L.

Wise, F.

Wise, F. W.

Yang, X.

Ye, J.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
[Crossref]

Zhang, H.

Zhang, S.

Zhao, L. M.

Zhou, X.

Zumbusch, A.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Appl. Phys. Lett. (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004).
[Crossref]

Electron. Lett. (1)

T. Sylvestre, S. Coen, O. Deparis, P. Emplit, and M. Haelterman, “Demonstration of passive modelocking through dissipative four-wave mixing in fibre laser,” Electron. Lett. 37, 881–882 (2001).
[Crossref]

IEEE J. Quant. Electron. (3)

J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quant. Electron. 37, 587–594 (2001).
[Crossref]

M. Nakazawa, K. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quant. Electron. 25, 2036–2044 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “The modulation instability laser. II. Theory,” IEEE J. Quant. Electron. 25, 2045–2052 (1989).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B: Opt. Phys. (2)

J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B: Opt. Phys. 25, 1178–1186 (2008).
[Crossref]

M. Quiroga-Teixeiro, C. B. Clausen, M. P. Sorensen, P. L. Christiansen, and P. A. Andrekson, “Passive mode locking by dissipative four-wave mixing,” J. Opt. Soc. Am. B: Opt. Phys. 15, 1315–1321 (1998).
[Crossref]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001).
[Crossref] [PubMed]

Nature Photon. (1)

B. Oktem, C. Ülgüdür, and F. O. Ilday, “Soliton-similariton fibre laser,” Nature Photon. 4, 307 – 311 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002).
[Crossref]

J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz,” Opt. Lett. 34, 3902–3904 (2009).
[Crossref] [PubMed]

P. Grelu, F. Belhache, F. Gutty, and J.-M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
[Crossref]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
[Crossref]

P. Honzatko, P. Peterka, and J. Kanka, “Modulational-instability σ-resonator fiber laser,” Opt. Lett. 26, 810–812 (2001).
[Crossref]

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
[Crossref] [PubMed]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
[Crossref] [PubMed]

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006).
[Crossref] [PubMed]

S. Zhang, F. Li, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, “Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser,” Opt. Lett. 30, 2852–2854 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, “Experimental Evidence for Soliton Explosions,” Phys. Rev. Lett. 88, 73903 (2002).
[Crossref]

Rev. Scie. Instrum. (2)

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Scie. Instrum. 72, 3749 (2001).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Scie. Instrum. 71, 1929–1960 (2000).
[Crossref]

Other (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Subpicosecond 200GHz soliton laser based on a C-MOS compatible integrated microring resonator,” in “Conference on Lasers and Electro-Optics CLEO 2010,” (2010), p. CPDA9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. EDFA: erbium-doped fiber amplifier, HNLF: highly nonlinear fiber.

Fig. 2
Fig. 2

(a) Optical spectra, (b) FROG spectrograms and (c) recovered field intensity (solid) and phase (dashed) for dispersion values (1) β2L = 0.4 ps2, (2) β2L = 0.5 ps2 and (3) β2L = 0.8 ps2.

Fig. 3
Fig. 3

(a) Duty cycle as a function of normalized dispersion κ. (b) Field intensity (solid), and phase (red, dotted) for the points 1,2,3 indicated in (a).

Fig. 4
Fig. 4

Comparison of (a) experimental and (b) numerical FROG spectrograms for the dispersion values given in Fig. 2 and Fig. 3 respectively (spectrograms have been thresholded for better clarity).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ζ U + i κ 2 τ 2 U = i | U | 2 U + G 1 + Q I S U α 2 U

Metrics