Abstract

Refractive index sensitivity of guided resonances in photonic crystal slabs is analyzed. We show that modal properties of guided resonances strongly affect spectral sensitivity and quality factors, resulting in substantial enhancement of refractive index sensitivity. A three-fold spectral sensitivity enhancement is demonstrated for suspended slab designs, in contrast to designs with a slab resting over a substrate. Spectral sensitivity values are additionally shown to be unaffected by quality factor reductions, which are common to fabricated photonic crystal nano-structures. Finally, we determine that proper selection of photonic crystal slab design parameters permits biosensing of a wide range of analytes, including proteins, antigens, and cells. These photonic crystals are compatible with large-area biosensor designs, permitting direct access to externally incident optical beams in a microfluidic device.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005).
    [CrossRef] [PubMed]
  2. G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
    [CrossRef]
  3. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [CrossRef] [PubMed]
  4. W. E. Moerner, “Single-molecule mountains yield nanoscale cell images,” Nat. Methods 3(10), 781–782 (2006).
    [CrossRef] [PubMed]
  5. X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
    [CrossRef] [PubMed]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  7. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  8. P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol. 22(2), 172–173 (2004).
    [CrossRef] [PubMed]
  9. B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
    [CrossRef] [PubMed]
  10. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
    [CrossRef]
  11. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  12. V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
    [CrossRef]
  13. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
    [CrossRef] [PubMed]
  14. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  15. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
    [CrossRef] [PubMed]
  16. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
    [CrossRef]
  17. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
    [CrossRef]
  18. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
    [CrossRef]
  19. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [CrossRef] [PubMed]
  20. H. Altug and J. Vucković, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982–984 (2005).
    [CrossRef] [PubMed]
  21. N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
    [CrossRef]
  22. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
    [CrossRef] [PubMed]
  23. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  24. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
    [CrossRef] [PubMed]
  25. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [CrossRef] [PubMed]
  26. N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
    [CrossRef]
  27. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
    [CrossRef] [PubMed]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [CrossRef]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  30. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
    [CrossRef]
  31. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).
  32. O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
    [CrossRef] [PubMed]
  33. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
    [CrossRef]
  34. L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008).
    [CrossRef] [PubMed]
  35. L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection,” Opt. Express 17(13), 10623–10632 (2009).
    [CrossRef] [PubMed]
  36. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [CrossRef]
  37. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  38. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
    [CrossRef] [PubMed]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  40. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton University Press, Princeton, NJ, 2008).
  41. O. Kilic, S. Kim, W. Suh, Y. A. Peter, A. S. Sudbø, M. F. Yanik, S. H. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29(23), 2782–2784 (2004).
    [CrossRef] [PubMed]
  42. Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
    [CrossRef]
  43. I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
    [CrossRef]
  44. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
    [CrossRef]
  45. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [CrossRef]
  46. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  47. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
    [CrossRef] [PubMed]
  48. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
    [CrossRef] [PubMed]
  49. M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
    [CrossRef]
  50. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
    [CrossRef] [PubMed]
  51. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
    [CrossRef]
  52. O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
    [CrossRef]

2010

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[CrossRef]

L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection,” Opt. Express 17(13), 10623–10632 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

2008

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
[CrossRef]

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

2007

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[CrossRef]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
[CrossRef] [PubMed]

2006

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

W. E. Moerner, “Single-molecule mountains yield nanoscale cell images,” Nat. Methods 3(10), 781–782 (2006).
[CrossRef] [PubMed]

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
[CrossRef]

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

2005

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005).
[CrossRef] [PubMed]

H. Altug and J. Vucković, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982–984 (2005).
[CrossRef] [PubMed]

2004

2003

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Agarwal, A.

Aitchison, J. S.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Altug, H.

Andersson, O.

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

Armani, A. M.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Balakrishnan, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Bentolila, L. A.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Block, I. D.

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Brueck, S. R. J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

Burr, G. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Bynum, M. A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Chan, L. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

Chan, L. L. Y.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

Chang, T.-Y.

Chen, L.

Choi, C. J.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

Chow, E.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Cook, L. J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Cremer, P. S.

P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol. 22(2), 172–173 (2004).
[CrossRef] [PubMed]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Cunningham, B. T.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

de Sterke, C. M.

Deich, J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Dell’Olio, F.

Ekblad, T.

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Esener, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Fan, S.

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Fan, S. H.

O. Kilic, S. Kim, W. Suh, Y. A. Peter, A. S. Sudbø, M. F. Yanik, S. H. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fan, X. D.

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
[CrossRef]

Fang, Y.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Fauchet, P. M.

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
[CrossRef] [PubMed]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Ferrie, A. M.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Fontaine, N. H.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Ganesh, N.

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gerken, M.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
[CrossRef]

Gobi, K. V.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[CrossRef]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

Golosovsky, M.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Gosangari, S. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Grot, A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
[CrossRef]

Harris, J. S.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Hu, J.

Huang, M.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Iyer, G.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Jäger, M.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Kenis, P. J. A.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Kilic, O.

Kim, S.

Kimerling, L. C.

Kolodziejski, L. A.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Kuhlenschmidt, M.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

Kuhlenschmidt, T.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

Kurtz, A.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Larsson, A.

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

Lee, M. M.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

Lee, M. R.

Lee, T. T.

Lemmer, U.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
[CrossRef]

Levi, O.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Li, J. J.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Liedberg, B.

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

Lipson, M.

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Liu, V.

Lousse, V.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Mathias, P. C.

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Mauro, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Michalet, X.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Mirkarimi, L. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Miura, N.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[CrossRef]

Moerner, W. E.

W. E. Moerner, “Single-molecule mountains yield nanoscale cell images,” Nat. Methods 3(10), 781–782 (2006).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nazirizadeh, Y.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
[CrossRef]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Passaro, V. M. N.

Pedersen, J.

N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Peter, Y. A.

Peter, Y.-A.

Pinaud, F.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Pineda, M.

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

Pineda, M. F.

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

Pogreb, R.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Pottier, P.

Povinelli, M.

Rahmani, A.

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

Rishpon, J.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Robinson, J. T.

Robotti, K. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ruda, H. E.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Sacks-Granek, V.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Schudel, B. R.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Shah, K.

K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005).
[CrossRef] [PubMed]

Shankaran, D. R.

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[CrossRef]

Shi, L.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sigalas, M. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Skorobogatiy, M.

Smith, S. J.

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Solgaard, O.

Steel, M. J.

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Sudbø, A. S.

Suh, W.

Sun, X.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Thrush, E.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Tomljenovic-Hanic, S.

Tsay, J.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Vahala, K. J.

Villeneuve, P. R.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Vuckovic, J.

Watkin, K. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

Weiss, S.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

Weissleder, R.

K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Wosinski, L.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Xiao, S. S.

N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Xu, M. Y. C.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Xu, T.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Yanik, A. A.

Yanik, M. F.

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zhang, J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

Zhang, W.

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, N.

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

Zlatanovic, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Apoptosis

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008).
[CrossRef]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Biomacromolecules

O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009).
[CrossRef]

Biophys. J.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Chem. Rev.

X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006).
[CrossRef] [PubMed]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

IEEE Sens. J.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009).
[CrossRef]

I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008).
[CrossRef]

IEEE Trans. Nanobiosci.

G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006).
[CrossRef]

J. Appl. Phys.

V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Lab Chip

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009).
[CrossRef] [PubMed]

Microfluid Nanofluidics

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008).
[CrossRef] [PubMed]

Microfluid. Nanofluid.

N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Nat. Biotechnol.

P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol. 22(2), 172–173 (2004).
[CrossRef] [PubMed]

Nat. Methods

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[CrossRef] [PubMed]

W. E. Moerner, “Single-molecule mountains yield nanoscale cell images,” Nat. Methods 3(10), 781–782 (2006).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

NeuroRx

K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005).
[CrossRef] [PubMed]

Opt. Express

L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection,” Opt. Express 17(13), 10623–10632 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[CrossRef]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[CrossRef] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Proc. SPIE

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).

Sens. Actuators B Chem.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006).
[CrossRef]

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009).
[CrossRef]

D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007).
[CrossRef]

Small

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton University Press, Princeton, NJ, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A unit cell for a square grid of holes PCS. Illustrations of (b) symmetric and (c) asymmetric PCS designs. (d) A typical transmission spectrum for a PCS with guided resonance frequencies indicated by dashed lines.

Fig. 2
Fig. 2

TE-like guided resonance mode profile in a symmetric PCS: (a) the electric field energy density, ε|E|2, and (b) field profile components (Ex , Ey , Ez ). The electric field and electric field energy density profiles were calculated using the SMM method for a hole radius to period ratio (r/a) = 0.3. (c) TE-like mode transmission spectrum for hole radius r = 0.1a, 0.2a, 0.3a, and 0.35a. Units for the electric field and electric field energy are arbitrary and consistent between plots.

Fig. 3
Fig. 3

TM-like guided resonance mode profile in a symmetric PCS: (a) the electric field energy density, ε|E|2, and (b) field profile components (Ex , Ey , Ez ). The electric field and electric field energy density profiles were calculated using the SMM method for a hole radius to period ratio (r/a) = 0.3. (c) TM-like mode transmission spectrum for hole radius r = 0.1a, 0.2a, 0.3a, and 0.35a.

Fig. 4
Fig. 4

TE-like guided resonance mode profile in an asymmetric PCS: (a) the electric field energy density, ε|E|2, and (b) field profile components (Ex , Ey , Ez ). The electric field and electric field energy density profiles were calculated using the SMM method for a hole radius to period ratio (r/a) = 0.3. (c) TE-like mode transmission spectrum for hole radius r = 0.1a, 0.2a, 0.3a, and 0.35a.

Fig. 5
Fig. 5

TM-like guided resonance mode profile in an asymmetric PCS: (a) the electric field energy density, ε|E|2, and (b) field profile components (Ex , Ey , Ez ). The electric field and electric field energy density profiles were calculated using the SMM method for a hole radius to period ratio (r/a) = 0.3. (c) TM-like mode transmission spectrum for hole radius r = 0.1a, 0.2a, 0.3a, and 0.35a.

Fig. 6
Fig. 6

Guided resonance mode profile for a thin slab (t = 180 nm) PCS. The electric field energy density, ε|E|2, is shown for the cases: (a) TE-like resonance in an asymmetric PCS, (b) TE-like resonance in a symmetric PCS, (c) TM-like resonance in an asymmetric PCS and (d) TM-like resonance in a symmetric PCS. The electric field energy density profiles were calculated using the SMM method for hole radius to period ratio (r/a) = 0.3.

Fig. 7
Fig. 7

Guided resonance wavelength versus surrounding RI for a (a) symmetric PCS sensor design and an (b) asymmetric PCS sensor design (r = 300 nm, t = 250 nm). Bulk spectral sensitivity values are indicated for surrounding RI values of 1.33 and 1.46.

Tables (3)

Tables Icon

Table 1 Sensitivity values for symmetric PCS designs of different radius holes. Indicated are the guided resonance wavelengths, bulk sensitivity values calculated from SMM and Meep, filling fractions, and quality factors for TE- and TM-like conditions.

Tables Icon

Table 2 Sensitivity values for asymmetric PCS designs of different radius holes. Indicated are the guided resonance wavelengths, bulk sensitivity values calculated from SMM and Meep, filling fractions, and quality factors for TE- and TM-like conditions.

Tables Icon

Table 3 Comparison of symmetric and asymmetric PCS biosensors to SPR sensor [46] and one-dimensional grating sensor [30] simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f = V l i q u i d ε | E | 2 d r 3 l i q u i d V l i q u i d + d i e l e c t r i c ε | E | 2 d r 3 l i q u i d + d i e l e c t r i c .
S = Δ λ Δ n l i q u i d = f λ 0 n e f f                     ​ ​ [ nm RIU ] ,
D L = R S = k Δ ω S = k ω 0 Q S                     [ RIU ] ,

Metrics