Abstract

We have selectively filled the core of hollow photonic crystal fibre with silica aerogel. Light is guided in the aerogel core, with a measured attenuation of 0.2 dB/cm at 1540 nm comparable to that of bulk aerogel. The structure guides light by different mechanisms depending on the wavelength. At long wavelengths the effective index of the microstructured cladding is below the aerogel index of 1.045 and guidance is by total internal reflection. At short wavelengths, where the effective cladding index exceeds 1.045, a photonic bandgap can guide the light instead. There is a small region of crossover, where both index- and bandgap-guided modes were simultaneously observed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Edelson, “Light-activated drugs,” Sci. Am. 259(2), 68–75 (1988).
    [CrossRef] [PubMed]
  2. G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
    [CrossRef]
  3. J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
    [CrossRef]
  4. M. D. W. Grogan, M. D. Rollings, L. Xiao, W. J. Wadsworth, R. England, S. A. Maier, and T. A. Birks, “Plasmonic Aerogel Doped with Gold Nanoparticles,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper JThE21.
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  6. A. V. Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” J. Non-Cryst. Solids 285(1–3), 202–209 (2001).
    [CrossRef]
  7. M. J. van Bommel and A. B. de Haan, “Drying of silica aerogel with supercritical carbon-dioxide,” J. Non-Cryst. Solids 186, 78–82 (1995).
    [CrossRef]
  8. L. M. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [CrossRef] [PubMed]
  9. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31(18), 2672–2674 (2006).
    [CrossRef] [PubMed]
  10. M. Vieweg, T. Gissibl, and H. Giessen, “Selectively Filled Photonic Crystal Fibres,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper CThB2.
  11. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
    [CrossRef]

2006

2005

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
[CrossRef]

L. M. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[CrossRef] [PubMed]

2003

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001

A. V. Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” J. Non-Cryst. Solids 285(1–3), 202–209 (2001).
[CrossRef]

1998

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

1995

M. J. van Bommel and A. B. de Haan, “Drying of silica aerogel with supercritical carbon-dioxide,” J. Non-Cryst. Solids 186, 78–82 (1995).
[CrossRef]

1988

R. L. Edelson, “Light-activated drugs,” Sci. Am. 259(2), 68–75 (1988).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Bird, D. M.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
[CrossRef]

Birks, T. A.

Creekmore, S.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

de Haan, A. B.

M. J. van Bommel and A. B. de Haan, “Drying of silica aerogel with supercritical carbon-dioxide,” J. Non-Cryst. Solids 186, 78–82 (1995).
[CrossRef]

Demokan, M.

Edelson, R. L.

R. L. Edelson, “Light-activated drugs,” Sci. Am. 259(2), 68–75 (1988).
[CrossRef] [PubMed]

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
[CrossRef]

Ho, H.

Hoo, Y.

Jin, W.

Jung, S. S.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Kim, S. Y.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Lai, K.

Leon-Saval, S. G.

Mott, A.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Namkung, M.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Pajonk, G. M.

A. V. Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” J. Non-Cryst. Solids 285(1–3), 202–209 (2001).
[CrossRef]

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

Pearce, G. J.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
[CrossRef]

Rao, A. V.

A. V. Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” J. Non-Cryst. Solids 285(1–3), 202–209 (2001).
[CrossRef]

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Seo, J. T.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Tabibi, B.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Temple, D.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

van Bommel, M. J.

M. J. van Bommel and A. B. de Haan, “Drying of silica aerogel with supercritical carbon-dioxide,” J. Non-Cryst. Solids 186, 78–82 (1995).
[CrossRef]

Wadsworth, W. J.

Witkowska, A.

Xiao, L. M.

Yang, Q.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Yoo, K. P.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

Zhao, C.

Appl. Phys. Lett.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. P. Yoo, A. Mott, M. Namkung, and S. S. Jung, “Large pure refractive nonlinearity of nanostructure silica aerogel,” Appl. Phys. Lett. 82(25), 4444–4446 (2003).
[CrossRef]

J. Non-Cryst. Solids

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225(1), 307–314 (1998).
[CrossRef]

A. V. Rao and G. M. Pajonk, “Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels,” J. Non-Cryst. Solids 285(1–3), 202–209 (2001).
[CrossRef]

M. J. van Bommel and A. B. de Haan, “Drying of silica aerogel with supercritical carbon-dioxide,” J. Non-Cryst. Solids 186, 78–82 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71(19), 195108 (2005).
[CrossRef]

Sci. Am.

R. L. Edelson, “Light-activated drugs,” Sci. Am. 259(2), 68–75 (1988).
[CrossRef] [PubMed]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other

M. D. W. Grogan, M. D. Rollings, L. Xiao, W. J. Wadsworth, R. England, S. A. Maier, and T. A. Birks, “Plasmonic Aerogel Doped with Gold Nanoparticles,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper JThE21.

M. Vieweg, T. Gissibl, and H. Giessen, “Selectively Filled Photonic Crystal Fibres,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper CThB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured loss spectrum through 1 cm of silica aerogel.

Fig. 2
Fig. 2

SEMs of a hollow-core PCF with the core (a) empty and (b) filled with aerogel. (c) Tilted image of (b), where the aerogel core sticks out from the fibre.

Fig. 3
Fig. 3

Measured attenuation of the aerogel-filled fibre at 8 discrete wavelengths.

Fig. 4
Fig. 4

(upper) Measured spectra of supercontinuum source (grey, dashed), unfilled fibre (red) and aerogel-filled fibre (blue). The peak at 1064 nm is the residual pump. (lower) Simulated DOS of the fibre's cladding. Lighter shades of grey represent higher DOS, while red means no cladding states are supported (zero DOS). The blue line marks the aerogel index n = 1.045. Yellow lines are guided modes of the filled fibre.

Fig. 5
Fig. 5

(a) Measured near-field images of the filled fibre at four wavelengths. (b) Simulated mode patterns at the same wavelengths (within 10 nm), superimposed on the simulated structure.

Fig. 6
Fig. 6

Output near-field images, for 750 nm light coupled into the filled fibre with a 40 × objective, of (a) an index guided mode and (b) a bandgap guided mode (with apparently a small amount of the index guided mode). The modes were selected by adjusting the input coupling.

Metrics