Abstract

Pyrromethene dyes doped polymeric channeled waveguide lasers with permanent DFB structures were fabricated via a novel pen-drawing technique with the patterned polydimethylsiloxane (PDMS) chips fabricated through a casting process as the substrates. With the high resolution dispensers, dye doped high viscosity pre-polymers were written into the PDMS grooves and the cross-section of the channeled waveguides could be controlled by both the polymer composition and the pen-drawing parameters. Highly stable laser output with 4.8 × 106 pulses of laser lifetime at 500 Hz of pump repetition rate has been obtained, which is suggested to be among one of the best results of pyrromethene 567 (PM567) up to date.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
  2. R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).
  3. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006).
    [PubMed]
  4. T. H. Nhung, M. Canva, T. T. A. Dao, F. Chaput, A. Brun, N. D. Hung, and J.-P. Boilot, “Stable doped hybrid sol-gel materials for solid-state dye laser,” Appl. Opt. 42(12), 2213–2218 (2003).
    [PubMed]
  5. Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
  6. H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).
  7. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997).
    [PubMed]
  8. O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
  9. O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).
  10. Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).
  11. A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
  12. R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).
  13. H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).
  14. F. J. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media,” Opt. Lett. 28(21), 2088–2090 (2003).
    [PubMed]
  15. M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).
  16. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45(16), 3846–3851 (2006).
    [PubMed]
  17. Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).
  18. W. N. Sisk and N. Tanaka, “Energy transfer and photodegradation of a Perylene Orange:LDS821 system in poly(methyl methacrylate),” Appl. Opt. 45(21), 5385–5390 (2006).
    [PubMed]
  19. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
  20. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
    [PubMed]
  21. H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).
  22. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
  23. Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).
  24. D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).
  25. Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).
  26. K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).
  27. N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).
  28. C. Ye, K. Y. Wong, Y. He, and X. Wang, “Distributed feedback sol-gel zirconia waveguide lasers based on surface relief gratings,” Opt. Express 15(3), 936–944 (2007).
    [PubMed]
  29. W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).
  30. Y. Oki, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, and M. Miyazaki, “Integration of Multiple-DFB Dye Lasers and Microflow-Channel on a Polymeric Chip,” Proc. Adv. Solid State Photonics (ASSP), 2008, MB3.
  31. N. Kamogawa, S. Kataoka, K. Sanada, M. Tanaka, H. Watanabe, and Y. Oki, “Development Thermo-Optical Quasi-Mode-Coupling DFB Dye Laser with Pen-Drawing Fabrication,” The 6th Asia Pacific Laser Symposium, 2008, pp. 54.
  32. Y. Yang, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, M. Miyazaki, and Y. Oki, “Incorporable DFB Dye Lasers for Micro-flow-channels on a Polymeric Chip,” 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, 1–9 (2008) 1258–1259.
  33. F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005).
    [PubMed]
  34. Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
  35. A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

2009 (3)

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

2008 (4)

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).

2007 (3)

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

C. Ye, K. Y. Wong, Y. He, and X. Wang, “Distributed feedback sol-gel zirconia waveguide lasers based on surface relief gratings,” Opt. Express 15(3), 936–944 (2007).
[PubMed]

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

2006 (6)

2005 (2)

F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005).
[PubMed]

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

2004 (2)

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

2003 (2)

2002 (6)

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

2001 (1)

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

2000 (1)

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

1997 (1)

1993 (1)

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

Ahmad, M.

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Aldag, H. R.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

Arimatsu, A.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

Aso, K.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Bader, C.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Bañuelos Prieto, J.

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

Barashkov, N.

Boilot, J.-P.

Bornemann, R.

Bräuer, A.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Brun, A.

Canva, M.

Cerdan, L.

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

Cha, B. H.

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Chan, J.

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

Chaput, F.

Chen, F.

Chiara, J. L.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

Costela, A.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

Coutts, D. W.

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

Danz, N.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Dao, T. T. A.

del Agua, D.

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

Dolotov, S. M.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Duarte, F. J.

Fan, X. P.

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Fukuda, M.

N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).

Garcia, O.

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

García, O.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

García-Moreno, I.

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

Garica-Moreno, I.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

Garrido, L.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

Gorman, A. A.

Hamblett, I.

He, Y.

Heath, J.

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

Holzer, W.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Hörhold, H.-H.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Hung, N. D.

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

James, R. O.

King, T. A.

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997).
[PubMed]

Kley, E. B.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Ko, D. K.

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Koldunov, M. F.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Krauss, T. F.

Kravchenko, Ya. V.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Lee, J.

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Lemmer, U.

Lo, D.

F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005).
[PubMed]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

López Arbeloa, F.

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

López Arbeloa, I.

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

Maeda, M.

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Manenkov, A. A.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Martin, V.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

Mito, K.

N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).

Miyamoto, S.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Miyazaki, M.

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Nakai, N.

N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).

Nhung, T. H.

Ni, W.

O’ Faolain, L.

Oe, K.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

Ogawa, Y.

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Oki, Y.

H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Omatsu, T.

H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).

Pacheco, D. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Penzkofer, A.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Pertsch, T.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Qian, G. D.

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Rahn, M. D.

Reznichenko, A. V.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Ribierre, J.-C.

Roskova, G. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Sakata, H.

H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

Samuel, I. D.

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).

Sastre, R.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

Shi, L.

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

Sisk, W. N.

Su, D. L.

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

Takayama, M.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

Takeuchi, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).

Takeuchi, N.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

Tanaka, M.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Tanaka, N.

Thiel, E.

Tillmann, H.

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

Tomiki, M.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

Trastoy, B.

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

Tsiminis, G.

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[PubMed]

Vasa, N. J.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Vasdekis, A. E.

Wang, J.

F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005).
[PubMed]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

Wang, M. Q.

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Wang, X.

Wang, Z. Y.

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Watanabe, H.

H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).

Webb, C. E.

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

Wong, K. Y.

Yamashita, K.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Yanagi, H.

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).

F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005).
[PubMed]

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Ye, C.

Zhang, G. X.

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

Zhu, X. L.

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

Zou, D.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Zuo, D.

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Adv. Funct. Mater. (1)

R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).

Adv. Mater. (1)

A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

Appl. Opt. (4)

Appl. Phys. B (2)

W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).

Appl. Phys. Lett. (7)

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).

H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).

K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).

A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).

R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).

Chem. Mater. (1)

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).

Chem. Phys. Lett. (1)

Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).

J. Phys. Chem. C (1)

O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).

Jpn. J. Appl. Phys. (3)

H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).

N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).

Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).

Opt. Commun. (3)

M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).

Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).

Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).

Proc. SPIE (1)

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).

Other (3)

Y. Oki, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, and M. Miyazaki, “Integration of Multiple-DFB Dye Lasers and Microflow-Channel on a Polymeric Chip,” Proc. Adv. Solid State Photonics (ASSP), 2008, MB3.

N. Kamogawa, S. Kataoka, K. Sanada, M. Tanaka, H. Watanabe, and Y. Oki, “Development Thermo-Optical Quasi-Mode-Coupling DFB Dye Laser with Pen-Drawing Fabrication,” The 6th Asia Pacific Laser Symposium, 2008, pp. 54.

Y. Yang, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, M. Miyazaki, and Y. Oki, “Incorporable DFB Dye Lasers for Micro-flow-channels on a Polymeric Chip,” 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, 1–9 (2008) 1258–1259.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The scheme of fabrication process.

Fig. 2
Fig. 2

The scheme of pen-drawing process (left) and picture of the flexible PDMS chip integrated with various dye doped polymeric waveguides (right).

Fig. 3
Fig. 3

Two schemes of cross-section profiles of the waveguides written in the PDMS grooves.

Fig. 4
Fig. 4

The cross-section profiles of PMMA (a) and P(MMA-TMSPMA) (b) waveguides

Fig. 5
Fig. 5

The DFB laser output spectra of PM567 and PM597 doped P(MMA-TMSPMA) channel waveguides. (inset: image of laser output)

Fig. 6
Fig. 6

The cross-section profiles of P(MMA-TMSPMA) waveguides wrote on PDMS bulk surface at various air pressures. (10 mm/s of pen speed)

Fig. 7
Fig. 7

The DFB laser output spectra from the PM 597 doped P(MMA-TMSPMA) waveguide directly wrote on the PDMS bulk surface at the air pressure of 300 kPa. (10 mm/s of pen speed)

Fig. 8
Fig. 8

The cross-section profiles of P(MMA1-x-TMSPMAx) waveguides wrote on PDMS bulk surface with various TMSPM content.

Fig. 9
Fig. 9

The DFB laser output spectra from the PM 567 doped P(MMA0.7-TMSPMA0.3) waveguide directly wrote on the PDMS bulk surface. (inset: image of laser output)

Fig. 10
Fig. 10

The input-output characteristics of the PM567, C540A co-doped P(MMA-TMSPMA) and PM567 solely doped PMMA waveguide lasers.

Fig. 11
Fig. 11

Normalized output of the PM567, C540A co-doped P(MMA-TMSPMA), PM567 doped P(MMA-TMSPMA), and PM567 doped PMMA channel waveguide DFB lasers as the function of pump pulses.

Metrics