Abstract

We propose and numerically investigate for the first time a novel all-optical on-off-keying to alternate-mark-inversion modulation format converter operating at 40 Gbps employing a semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI). We demonstrate that this SOA-MZI operates as a pulse subtractor, and in the absence of patterning will produce perfectly phase inverted pulses regardless of the individual SOA phase excursions. We use a comprehensive computer model to illustrate the impact of patterning on the output phase modulation, which is quantified through the definition of the phase compression factor.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
    [CrossRef]
  2. X. Zheng, D. Mahgerefteh, Y. Matsui, X. Ye, V. Bu, K. McCallion, H. Xu, M. Deutsch, H. Ereifej, R. Lewen, J. O. Wesstrom, R. Schatz, and P. J. Rigole, “Generation of RZ-AMI using a widely tuneable modulated grating Y-branch chirp managed laser,” in Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC-NFOEC2010), paper OThE5.
  3. K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
    [CrossRef]
  4. P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
    [CrossRef]
  5. J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
    [CrossRef]
  6. W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
    [CrossRef]
  7. S. B. Jun, K. J. Park, K. Hoon, H. S. Chung, J. H. Lee, and Y. C. Chung, “Passive optical NRZ-to-RZ converter,” in Optical Fiber Communication Conference (OFC2004), paper ThN1.
  8. Q. Li, T. Ye, Y. Lu, Z. Zhang, M. Qiu, and Y. Su, “All-optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator,” Chin. Opt. Lett. 7(1), 12–14 (2009).
    [CrossRef]
  9. G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
    [CrossRef]
  10. P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
    [CrossRef]
  11. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, “Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23(2), 834–841 (2005).
    [CrossRef]
  12. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, and C. R. Giles, “All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express 17(21), 19062–19066 (2009).
    [CrossRef]
  13. L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate,” in 11th International Conference on Integrated Optics and Optical Fibre Communications and 23rd European Conference on Optical Communications (IOCC-ECOC1997), 269–272 vol.262.
  14. J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
    [CrossRef]
  15. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
    [CrossRef]
  16. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [CrossRef]
  17. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jacques, and C. R. Giles, “Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer,” in 31st European Conference on Optical Communication (ECOC2005), 29–30 vol.26.
  18. F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
    [CrossRef]
  19. R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum Press, 1992).
  20. J. M. Dailey and T. L. Koch, “Simple Rules for Optimizing Asymmetries in SOA-Based Mach-Zehnder Wavelength Converters,” J. Lightwave Technol. 27(11), 1480–1488 (2009).
    [CrossRef]
  21. R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18(13), 13502–13509 (2010).
    [CrossRef] [PubMed]
  22. S. Bischoff, M. L. Nielsen, and J. Mork, “Improving the all-optical response of SOAs using a modulated holding signal,” J. Lightwave Technol. 22(5), 1303–1308 (2004).
    [CrossRef]
  23. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical Regeneration at 40 Gb/s and Beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
    [CrossRef]

2010 (1)

2009 (4)

2006 (1)

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

2005 (3)

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
[CrossRef]

C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, “Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23(2), 834–841 (2005).
[CrossRef]

2004 (1)

2003 (3)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical Regeneration at 40 Gb/s and Beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

2002 (1)

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

2001 (2)

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

1988 (1)

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

Balmefrezol, E.

Barry, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Bischoff, S.

Brindel, P.

Buhl, L.

Cabot, S.

Cappuzzo, M.

Chan, C.-K.

G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
[CrossRef]

Chandrasekhar, S.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Chang, G. K.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Chen, L.-K.

G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
[CrossRef]

Chen, Y. F.

Cheng, K. S.

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

Conradi, J.

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

Dailey, J. M.

Dinu, M.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Dutta, N.

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Giles, C. R.

Gnauck, A. H.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Gomez, L. T.

Ibrahim, S. K.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

Jaques, J.

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Kaiser, W.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

Kang, I.

Kim, Y. J.

Koch, T. L.

Koyama, F.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

Lardenois, S.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

Lavigne, B.

Leclerc, O.

Lee, C. G.

Lee, H. J.

Leuthold, J.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

Li, Q.

Lu, G.-W.

G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
[CrossRef]

Lu, Y.

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Manning, R. J.

R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18(13), 13502–13509 (2010).
[CrossRef] [PubMed]

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

Maxwell, G. D.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Mork, J.

Nielsen, M. L.

Oga, K.

F. Koyama and K. Oga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

Park, C. S.

Park, C.-S.

Patel, S. S.

Piccirilli, A.

Pierre, L.

Poustie, A. J.

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

Qiu, M.

Rasras, M.

Raybon, G.

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Rosenkranz, W.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

Rouvillain, D.

Seguineau, F.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Su, Y.

Q. Li, T. Ye, Y. Lu, Z. Zhang, M. Qiu, and Y. Su, “All-optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator,” Chin. Opt. Lett. 7(1), 12–14 (2009).
[CrossRef]

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

Webb, R. P.

R. P. Webb, J. M. Dailey, and R. J. Manning, “Pattern compensation in SOA-based gates,” Opt. Express 18(13), 13502–13509 (2010).
[CrossRef] [PubMed]

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

Wichers, M.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

Wuth, T.

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

Ye, T.

Yu, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Zhang, Z.

Chin. Opt. Lett. (1)

Electron. Lett. (2)

J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, and A. J. Poustie, “42.6 Gbit/s fully integrated all-optical XOR gate,” Electron. Lett. 45(20), 1047–1049 (2009).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39(1), 79–81 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett. 13(12), 1298–1300 (2001).
[CrossRef]

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” IEEE Photon. Technol. Lett. 13(8), 884–886 (2001).
[CrossRef]

K. S. Cheng and J. Conradi, “Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems,” IEEE Photon. Technol. Lett. 14(1), 98–100 (2002).
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, “40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,” IEEE Photon. Technol. Lett. 15(5), 766–768 (2003).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Commun. (2)

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40 Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

G.-W. Lu, L.-K. Chen, and C.-K. Chan, “A simple AMI-RZ transmitter based on single-arm intensity modulator and optical delay interferometer,” Opt. Commun. 255(1-3), 35–40 (2005).
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

P. J. Winzer and R. J. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Other (5)

X. Zheng, D. Mahgerefteh, Y. Matsui, X. Ye, V. Bu, K. McCallion, H. Xu, M. Deutsch, H. Ereifej, R. Lewen, J. O. Wesstrom, R. Schatz, and P. J. Rigole, “Generation of RZ-AMI using a widely tuneable modulated grating Y-branch chirp managed laser,” in Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC-NFOEC2010), paper OThE5.

S. B. Jun, K. J. Park, K. Hoon, H. S. Chung, J. H. Lee, and Y. C. Chung, “Passive optical NRZ-to-RZ converter,” in Optical Fiber Communication Conference (OFC2004), paper ThN1.

L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach-Zehnder interferometer gate,” in 11th International Conference on Integrated Optics and Optical Fibre Communications and 23rd European Conference on Optical Communications (IOCC-ECOC1997), 269–272 vol.262.

I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jacques, and C. R. Giles, “Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer,” in 31st European Conference on Optical Communication (ECOC2005), 29–30 vol.26.

R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The proposed all-optical modulation converter with the XOR gate shown inside the dotted box.

Fig. 3
Fig. 3

Data inputs to SOA1 and SOA2 are shown in the first and second plots, respectively. The probe phase evolutions after the two SOAs are shown in the third plot with the static π phase shift removed for clarity. The MZI output pulses from the modulation converter are depicted in the fourth plot with the pulse phase changes shown as inversions around the zero level.

Fig. 2
Fig. 2

Electric field phasor diagrams depicting the two SOA output field vectors, E S O A 1 and E S O A 2 , and the relative orientation between the two possible output fields, E 10 and E 01 .

Fig. 4
Fig. 4

(a) Constellation diagram of the 40 Gbps output from the modulation converter. (b) The signal output spectrum (solid line) as well as carrier and sideband peaks (circles) with output phase modulation removed for comparison.

Fig. 5
Fig. 5

(a) Constellation diagram of the 20 Gbps output from the modulation converter. (b) The signal output spectrum (solid line) as well as carrier and sideband peaks (circles) with output phase modulation removed for comparison.

Tables (1)

Tables Icon

Table 1 Optical XOR Logic

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E i n H ( ϕ S O A 1 , ϕ S O A 2 ) ,
H ( ϕ S O A 1 , ϕ S O A 2 ) = e j ( π + ϕ S O A 1 + ϕ S O A 2 2 ) sin ( ϕ S O A 2 ϕ S O A 1 2 ) ,
E i n H ( ϕ S O A 1 , 0 ) E i n H ( 0 , ϕ S O A 2 ) = E i n e j ( π + ϕ S O A 1 2 ) sin ( ϕ S O A 1 2 ) E i n e j ( π + ϕ S O A 2 2 ) sin ( ϕ S O A 2 2 ) = sin ( ϕ S O A 1 2 ) + sin ( ϕ S O A 1 2 ) = 1.
Y ( t ) = 1 2 [ E S O A 2 ( t ) + E S O A 1 ( t ) ]       n = y [ n ] u ( t n T ) ,
y [ n ] = y [ n + m ] ,
y [ n ] = x [ n ] x [ n 1 ] ,
| Y ˜ ( ω ) | 2 = | X ˜ ( ω ) ( 1 e j ω ) | 2 = 4 | X ˜ ( ω ) | 2 sin 2 ( ω 2 ) ,
δ 1 Δ θ π ,
                  y [ n ] = x [ n ] x [ n 1 ] = ± 1 , y [ n + m ] = x [ n + m ] x [ n + m 1 ] = ± 1.
y [ n + 1 ] = 0 = x [ n + 1 ] x [ n ]                                                           x [ n + 1 ] = x [ n ]         y [ n + 2 ] = 0 = x [ n + 2 ] x [ n + 1 ]                           x [ n + 2 ] = x [ n + 1 ] = x [ n ] ... ...                       y [ n + m 1 ] = 0 = x [ n + m 1 ] x [ n + m 2 ] x [ n + m 1 ] = x [ n + m 2 ] = x [ n ] .
                  y [ n ] = x [ n ] x [ n 1 ] = x [ n ] x [ n ] _____ , y [ n + m ] = x [ n + m ] x [ n + m 1 ] = x [ n + m ] x [ n ] = x [ n ] _____ x [ n ] ,
y [ n ] = y [ n + m ] ,

Metrics