Abstract

A novel model including the interference effect of master laser reflection is established for reflection-mode optical injection locking. This model sheds insight on the physical origin of some rather distinct but unexplained modulation characteristics of optical injection-locked vertical-cavity surface-emitting lasers (VCSELs), including data pattern inversion in on-off keying modulation, a large RF gain at low frequency, and an anomalous DC-suppression under small signal modulation, in specific locking conditions. Excellent agreement is obtained between the simulation and experiment results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [CrossRef] [PubMed]
  2. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express 17(16), 13785–13791 (2009).
    [CrossRef] [PubMed]
  3. D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “90-km single-mode fiber transmission of 10-Gb/s multimode VCSELs under optical injection locking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuK7.
  4. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
    [CrossRef]
  5. X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
    [CrossRef]
  6. E. K. Lau, H. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
    [CrossRef]
  7. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [CrossRef]
  8. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
    [CrossRef]
  9. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [CrossRef]
  10. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [CrossRef]
  11. W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical origin of data pattern inversion in optical injection-locked VCSELs,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FTuW2.
  12. P. Guo, W. Yang, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Anomalous modulation characteristics of optical injection-locked VCSELs,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD6.
  13. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
    [CrossRef]
  14. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
    [CrossRef]
  15. X. Wang, B. Faraji, W. Hofmann, M.-C. Amann, and L. Chrostowski, “Interference effects on the frequency response of injection-locked VCSELs,” in The 22nd IEEE International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New Jersey, 2010), poster P11.

2009 (1)

2008 (3)

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

E. K. Lau, H. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[CrossRef]

2006 (2)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

1995 (1)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

1985 (2)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

Amann, M. C.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Böhm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express 17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Christen, L.

Chrostowski, L.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Dutta, N. K.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Henry, C. H.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Hofmann, W.

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Koyama, F.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

Lau, E. K.

Liu, J. M.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Liu, Y.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

Olsson, N. A.

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

Parekh, D.

Simpson, T. B.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Sung, H.

E. K. Lau, H. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[CrossRef]

Sung, H. K.

Willner, A. E.

Wu, M. C.

Zhang, B.

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

Electron. Lett. (1)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, and Y. Liu, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett. 42, 976–977 (2006).
[CrossRef]

IEEE J. Quantum Electron. (5)

C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron. 21(8), 1152–1156 (1985).
[CrossRef]

E. K. Lau, H. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

X. Zhao and C. J. Chang-Hasnain, “A new amplifier model for resonance enhancement of optically injection-locked lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech. 54(2), 788–796 (2006).
[CrossRef]

Opt. Express (2)

Other (4)

X. Wang, B. Faraji, W. Hofmann, M.-C. Amann, and L. Chrostowski, “Interference effects on the frequency response of injection-locked VCSELs,” in The 22nd IEEE International Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, New Jersey, 2010), poster P11.

D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “90-km single-mode fiber transmission of 10-Gb/s multimode VCSELs under optical injection locking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuK7.

W. Yang, P. Guo, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Physical origin of data pattern inversion in optical injection-locked VCSELs,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FTuW2.

P. Guo, W. Yang, D. Parekh, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Anomalous modulation characteristics of optical injection-locked VCSELs,” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

OIL-VCSEL model with the interference effect. Total output field Etotal = Es + Er .

Fig. 2
Fig. 2

The total output power for (a) transmission-mode OIL and (b) reflection-mode OIL.

Fig. 3
Fig. 3

Simulation results for OIL-VCSEL small-signal frequency response (S21) with different detuning values under a strong injection ratio of 16.15 dB. (a) Normalized amplitude response; (b) Phase response. The arrow on (b) indicates a π phase change as the detuning increases from blue to red. From blue detuning to red detuning, the detuning values for the curves are −0.602 nm, 0.199 nm, 0.822 nm, 1.500 nm, 1.883 nm; corresponding to the phase shift φs −0.490π, −0.4486π, −0.400π, −0.300π, −0.165π, respectively.

Fig. 4
Fig. 4

Simulation results for OIL-VCSEL 1 Gb/s OOK data pattern with different detuning values under a fixed injection ratio of 12.0 dB. As the detuning changes from blue to red, the data pattern changes from normal to transition state, and then to inverted. From blue detuning to red detuning, the detuning values for the curves are −0.115 nm, 0.321 nm, 1.178 nm, 1.662 nm; corresponding to the phase shift φs −0.470π, −0.430π, −0.300π, −0.125π, respectively.

Fig. 5
Fig. 5

Simulation results for the RF response of the small-signal analysis at 1 GHz and the extinction ratio re of the 1 Gb/s OOK large-signal modulation of OIL-VCSEL on the same locking map. The negative re indicates data pattern inversion. The dashed line on (b) indicates the conditions where re = 0.

Fig. 6
Fig. 6

RF response of the small-signal modulation of the OIL-VCSEL for different detuning values (−0.759 nm, 0.149 nm, 0.395 nm and 1.165 nm), at a fixed injection ratio of 20 dB. FR: free running.

Fig. 7
Fig. 7

Data pattern of the 1Gb/s OOK large-signal modulation of OIL-VCSEL for different detuning values (−0.230 nm, 0.134 nm, 0.630 nm and 1.036 nm), at a fixed injection ratio of 12.9 dB. FR: free running.

Fig. 8
Fig. 8

RF response of the small-signal modulation at 1 GHz and extinction ratio re of the 1 Gb/s OOK large-signal modulation of OIL-VCSEL on the same locking map. The crosses show in which conditions the data were taken in the experiment, and the dashed line on (b) indicates the conditions where re = 0.

Fig. 9
Fig. 9

Simulation results for the extinction ratio re of the 1 Gb/s OOK large-signal modulation of the OIL-VCSEL on the locking map. (Simulation parameters are listed in Table 1 in Appendix, except that the field reflectivity of the VCSEL’s front DBR is changed from 0.9968 to 0.9962 while the reflection phase from 1.000π to 0.970π at 1550 nm.) The dashed line indicates the conditions where re = 0. The output of the VCSEL can switch between normal state and inverted state by different injection powers from the master laser, shown by the double head arrow line.

Tables (1)

Tables Icon

Table 1 Simulation Parameters of the Slave VCSEL

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P t o t a l = 1 2 | E t o t a l | 2 = 1 2 | E s | 2 + 1 2 | E m | 2 r 2 + | E s E m | r cos ( ϕ s ϕ r ) .
P t o t a l + Δ P t o t a l = 1 2 ( | E t o t a l | 2 + Δ | E t o t a l | 2 ) = ( 1 2 | E s | 2 + 1 2 Δ | E s | 2 ) + 1 2 | E m | 2 r 2 + | E s | 2 + Δ | E s | 2 | E m | r cos ( ϕ s + Δ ϕ s ϕ r ) .

Metrics