Abstract

Thin disk laser experiments with Yb:LuAG (Yb:Lu3Al5O12) were performed leading to 5 kW of output power and an optical-to-optical efficiency exceeding 60%. Comparative analyses of the laser relevant parameters of Yb:LuAG and Yb:YAG were carried out. While the spectroscopic properties were found to be nearly identical, investigations of the thermal conductivities revealed a 20% higher value for Yb:LuAG at Yb3+-doping concentrations of about 10%. Due to the superior thermal conductivity with respect to Yb:YAG, Yb:LuAG offers thus the potential of improved performance in high power thin disk laser applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).
  2. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [CrossRef]
  3. A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
    [CrossRef]
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
    [CrossRef] [PubMed]
  5. C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
    [CrossRef]
  6. C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
    [CrossRef]
  7. C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009).
    [CrossRef] [PubMed]
  8. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
    [CrossRef]
  9. P. G. Klemens, “Thermal Resistance due to Point Defects at High Temperatures,” Phys. Rev. 119(2), 507–509 (1960).
    [CrossRef]
  10. G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
    [CrossRef]
  11. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
    [CrossRef]
  12. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  13. J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, “High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals,” Opt. Lett. 31(22), 3294–3296 (2006).
    [CrossRef] [PubMed]
  14. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008).
    [CrossRef] [PubMed]
  15. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
    [CrossRef]
  16. D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
    [CrossRef]
  17. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
    [CrossRef]
  18. J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
    [CrossRef]
  19. H. Okamoto, “The Ir-Re (Iridium-Rhenium) System,” J. Phase Equilibria 13(6), 649–650 (1992).
    [CrossRef]
  20. F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
    [CrossRef]
  21. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, Heidelberg, 1990).
  22. T. B. Coplen, “Atomic Weights of the Elements 1999 Technical Report,” Pure Appl. Chem. 73(4), 667–683 (2001).
    [CrossRef]
  23. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Heidelberg, Germany, 1999).
  24. D. Klimm, data from FactSage 5.3 (personal communication, 2009).
  25. N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
    [CrossRef]
  26. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
    [CrossRef]
  27. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [CrossRef] [PubMed]
  28. C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
    [CrossRef]
  29. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
    [CrossRef]
  30. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–132 (1986).
    [CrossRef]
  31. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–957 (1964).
    [CrossRef]
  32. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
    [CrossRef]
  33. D. L. Wood, “Energy Levels of Yb3+ in Garnets,” J. Chem. Phys. 39(7), 1671–1673 (1963).
    [CrossRef]
  34. J. A. Koningstein, “Energy Levels and Crystal-field Calculations of Trivalent Ytterbium in Yttrium Aluminum Garnet and Yttrium Gallium Garnet,” Theor. Chim. Acta 3(3), 271–277 (1965).
    [CrossRef]
  35. G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19 (1977).
  36. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001).
    [CrossRef]
  37. J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
    [CrossRef]
  38. E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966).
  39. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B 21(3), 543–547 (2004).
    [CrossRef]
  40. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  41. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [CrossRef]
  42. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
    [CrossRef]
  43. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
    [CrossRef]
  44. K. Contag, Modellierung und numerische Auslegung des Yb:YAG Scheibenlasers (PhD-thesis, IFSW, University of Stuttgart, 2002).

2009

2008

G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

2007

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[CrossRef] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[CrossRef] [PubMed]

2006

2005

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2004

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B 21(3), 543–547 (2004).
[CrossRef]

2003

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

2001

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001).
[CrossRef]

T. B. Coplen, “Atomic Weights of the Elements 1999 Technical Report,” Pure Appl. Chem. 73(4), 667–683 (2001).
[CrossRef]

2000

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

1999

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

1997

N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[CrossRef]

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

1994

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

1992

H. Okamoto, “The Ir-Re (Iridium-Rhenium) System,” J. Phase Equilibria 13(6), 649–650 (1992).
[CrossRef]

1986

1980

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[CrossRef]

1971

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

1967

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

1965

J. A. Koningstein, “Energy Levels and Crystal-field Calculations of Trivalent Ytterbium in Yttrium Aluminum Garnet and Yttrium Gallium Garnet,” Theor. Chim. Acta 3(3), 271–277 (1965).
[CrossRef]

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[CrossRef]

1964

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–957 (1964).
[CrossRef]

1963

D. L. Wood, “Energy Levels of Yb3+ in Garnets,” J. Chem. Phys. 39(7), 1671–1673 (1963).
[CrossRef]

1961

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

1960

P. G. Klemens, “Thermal Resistance due to Point Defects at High Temperatures,” Phys. Rev. 119(2), 507–509 (1960).
[CrossRef]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Aka, G.

Andres, H.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Baer, C. R. E.

Basun, S.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

Basun, S. A.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Bensalah, A.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Bernhagen, M.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Blasse, G.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Boulon, G.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Brenier, A.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Bruce, J. A.

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[CrossRef]

Buchanan, R. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

Bünting, U.

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Canibano, H.

Caslavsky, J. L.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Coplen, T. B.

T. B. Coplen, “Atomic Weights of the Elements 1999 Technical Report,” Pure Appl. Chem. 73(4), 667–683 (2001).
[CrossRef]

Deng, P.

Eganyan, A.

Ellens, A.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Emons, M.

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Euler, F.

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[CrossRef]

Fagundes-Peters, D.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Fornasiero, L.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Fredrich, S. T.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Fredrich-Thornton, S. T.

Fukuda, T.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Golling, M.

Guyot, Y.

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Hashimoto, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Heckl, O. H.

Herrmann, G. F.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

Higuchi, M.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Hofstaetter, A.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Huber, G.

C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009).
[CrossRef] [PubMed]

C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[CrossRef] [PubMed]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Inoue, N.

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

Jaque, D.

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Jiang, M.

Johannsen, J.

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Kawanaka, J.

Keller, U.

Klemens, P. G.

N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[CrossRef]

P. G. Klemens, “Thermal Resistance due to Point Defects at High Temperatures,” Phys. Rev. 119(2), 507–509 (1960).
[CrossRef]

Koningstein, J. A.

J. A. Koningstein, “Energy Levels and Crystal-field Calculations of Trivalent Ytterbium in Yttrium Aluminum Garnet and Yttrium Gallium Garnet,” Theor. Chim. Acta 3(3), 271–277 (1965).
[CrossRef]

Kränkel, C.

C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009).
[CrossRef] [PubMed]

C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[CrossRef] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[CrossRef] [PubMed]

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Kuch, S.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Kühn, H.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

Laguta, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

Leong, C.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Liu, J.

Loiseau, P.

Lünstedt, K.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

Martynyuk, N.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–957 (1964).
[CrossRef]

Meijerink, A.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Mix, E.

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Mond, M.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Morgner, U.

Morikawa, J.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Moulton, P. F.

Nishioka, H.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ogawa, T.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Okamoto, H.

H. Okamoto, “The Ir-Re (Iridium-Rhenium) System,” J. Phase Equilibria 13(6), 649–650 (1992).
[CrossRef]

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Padture, N. P.

N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[CrossRef]

Palmer, G.

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Pearson, J. J.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

Petermann, K.

C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009).
[CrossRef] [PubMed]

C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, “Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in EIIZ and EIIX orientations with 26 W output power,” J. Opt. Soc. Am. B 26(7), 1310–1314 (2009).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[CrossRef]

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[CrossRef] [PubMed]

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[CrossRef] [PubMed]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Peters, R.

Peters, V.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

Petrosyan, A. G.

Petrov, V.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ródenas, A.

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Sato, H.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

Schultze, M.

Siegel, M.

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

Song, P.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

Südmeyer, T.

Takahashi, J.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

ter Heerdt, M. L. H.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Uecker, R.

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

Ueda, K.

Urata, Y.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Viechnicki, D. J.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Wada, S.

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

Wang, J.

Wegh, R. T.

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Wickersheim, K. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

Wood, D. L.

D. L. Wood, “Energy Levels of Yb3+ in Garnets,” J. Chem. Phys. 39(7), 1671–1673 (1963).
[CrossRef]

Xu, J.

Xu, X.

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

Zhang, H.

Zhao, Z.

Zhou, G.

Acta Crystallogr.

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

C. Kränkel, J. Johannsen, R. Peters, K. Petermann, and G. Huber, “Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration,” Appl. Phys. B 87(2), 217–220 (2007).
[CrossRef]

Appl. Phys. Lett.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

IEEE J. Quantum Electron.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

J. Alloy. Comp.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4,” J. Alloy. Comp. 380(1-2), 15–26 (2004).
[CrossRef]

J. Am. Ceram. Soc.

N. P. Padture and P. G. Klemens, “Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc. 80(4), 1018–1020 (1997).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J. Takahashi, “Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis,” J. Appl. Phys. 103, 063522 (2008).
[CrossRef]

W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961).
[CrossRef]

J. Chem. Phys.

D. L. Wood, “Energy Levels of Yb3+ in Garnets,” J. Chem. Phys. 39(7), 1671–1673 (1963).
[CrossRef]

J. Cryst. Growth

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[CrossRef]

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[CrossRef]

J. Lumin.

D. Fagundes-Peters, N. Martynyuk, K. Lünstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, and A. Hofstaetter, “High quantum efficiency YbAG-crystals,” J. Lumin. 125(1-2), 238–247 (2007).
[CrossRef]

K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare-earth-doped sesquioxides,” J. Lumin. 87–89, 973–975 (2000).
[CrossRef]

J. Mater. Sci.

J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and matastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci. 15(7), 1709–1718 (1980).
[CrossRef]

J. Opt. Soc. Am. B

J. Phase Equilibria

H. Okamoto, “The Ir-Re (Iridium-Rhenium) System,” J. Phase Equilibria 13(6), 649–650 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

P. G. Klemens, “Thermal Resistance due to Point Defects at High Temperatures,” Phys. Rev. 119(2), 507–509 (1960).
[CrossRef]

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–957 (1964).
[CrossRef]

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy Levels of Yb3+ in Gallium and Aluminum Garnets. I. Spectra,” Phys. Rev. 159(2), 245–251 (1967).
[CrossRef]

Phys. Rev. B

G. A. Slack and D. W. Oliver, “Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

A. Ellens, H. Andres, M. L. H. ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B 55(1), 180–186 (1997).
[CrossRef]

Pure Appl. Chem.

T. B. Coplen, “Atomic Weights of the Elements 1999 Technical Report,” Pure Appl. Chem. 73(4), 667–683 (2001).
[CrossRef]

Quantum Electron.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Theor. Chim. Acta

J. A. Koningstein, “Energy Levels and Crystal-field Calculations of Trivalent Ytterbium in Yttrium Aluminum Garnet and Yttrium Gallium Garnet,” Theor. Chim. Acta 3(3), 271–277 (1965).
[CrossRef]

Other

G. A. Bogomolova, L. A. Bumagina, A. A. Kaminskii, and B. Z. Malkin, “Crystal field in laser garnets with TR3+ ions in the exchange charge model,” Sov. Phys. Solid State 19 (1977).

E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966).

K. Contag, Modellierung und numerische Auslegung des Yb:YAG Scheibenlasers (PhD-thesis, IFSW, University of Stuttgart, 2002).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Heidelberg, Germany, 1999).

D. Klimm, data from FactSage 5.3 (personal communication, 2009).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, Heidelberg, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Comparison of the absorption and emission cross sections of Yb:YAG and Yb:LuAG. The different scaling of the y-axis for the upper and lower graph should be noted.

Fig. 2
Fig. 2

(Color online) Dependency of thermal conductivity κ of Yb:LuAG and Yb:YAG on the Yb3+-doping concentration. Due to the nearly identical cation densities in both materials (see Tab. 1), identical percentage-values correspond to very similar Yb3+-densities. Symbols represent the measured data while the curves represent the fits according to Eq. (3).

Fig. 3
Fig. 3

(Color online) (a) Theoretical values for the maximum optical-to-optical efficiencies of Yb(10%):LuAG and Yb(10%):YAG in dependence of the thickness of the disk according to the zero-dimensional model [43]. (b) Average heating of the disk (ΔTav) with reference to the cooling temperature for pump intensities between 4 kW/cm2 and 10 kW/cm2 for Yb:LuAG and Yb:YAG at their respective optimum disk thicknesses extracted from Fig. 3a. All fit parameters are given in the graphs.

Fig. 4
Fig. 4

(Color online) (a) Input-output characteristics of Yb:LuAG and Yb:YAG with similar disk thicknesses in comparison. (b) Measured slope efficiencies of a 200 µm thick Yb:LuAG disk for different output coupler transmissions between 0.4% and 4.0% with 1.2 mm pump spot diameter and 40 W of incident pump power.

Fig. 5
Fig. 5

(Color online) Comparable input-output characteristics and optical-to-optical efficiencies of Yb:LuAG and Yb:YAG for optimized Yb:YAG laser operation (courtesy of Trumpf Laser GmbH & Co. KG).

Tables (1)

Tables Icon

Table 1 Structural and thermal properties of YAG, LuAG, and YbAG

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ e m ( ν ) = σ a b s ( ν ) Z l Z u exp ( E Z P L h ν k T ) ,
κ = c p ρ α ,
κ = κ m χ T ε arctan ( ε χ T ) ,
ε = c ( 1 c ) ( m s m d ) 2 ( c m s + ( 1 c ) m d ) 2     and     κ m = ( 1 c ) κ 0 + c κ 100 ,
F O M = κ χ Q L | d n / d T |     with     χ Q L = λ l a s λ p u m p 1 ,

Metrics