Abstract

We report on the experimental evidence of tilted polymer nanofiber rotation, using a highly focused linear polarized Gaussian beam. Torque is controlled by varying trapping power or fiber tilt angle. This suggests an alternative strategy to previously reported approaches for the rotation of nano-objects, to test fundamental theoretical aspects. We compare experimental rotation frequencies to calculations based on T-Matrix formalism, which accurately reproduces measured data, thus providing a comprehensive description of trapping and rotation dynamics of the linear nanostructures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
    [CrossRef]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  3. A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef]
  4. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [CrossRef] [PubMed]
  5. M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41(5), 275–285 (2000).
    [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  7. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
    [CrossRef]
  8. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
    [CrossRef]
  9. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
    [CrossRef]
  10. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
    [CrossRef]
  11. K. D. Bonin, B. Kourmanov, and T. G. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
    [PubMed]
  12. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
    [CrossRef] [PubMed]
  13. E. Santamato, A. Sasso, B. Piccirillo, and A. Vella, “Optical angular momentum transfer to transparent isotropic particles using laser beam carrying zero average angular momentum,” Opt. Express 10(17), 871–878 (2002).
    [PubMed]
  14. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  15. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
    [CrossRef]
  16. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
    [CrossRef]
  17. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  18. E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
    [CrossRef]
  19. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [CrossRef]
  20. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40(12), 1961–1973 (2001).
    [CrossRef]
  21. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  22. O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
    [CrossRef] [PubMed]
  23. F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
    [CrossRef] [PubMed]
  24. A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
    [CrossRef] [PubMed]
  25. J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
    [CrossRef] [PubMed]
  26. N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
    [CrossRef]
  27. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
    [CrossRef] [PubMed]
  28. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
    [CrossRef] [PubMed]
  29. F. Borghese, P. Denti, and R. Saija, Scattering from model nonspherical particles (Springer, Berlin, 2007), 2nd ed.
  30. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43(12), 2532–2544 (2004).
    [CrossRef] [PubMed]
  31. J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43(12), 2545–2554 (2004).
    [CrossRef] [PubMed]
  32. J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45(15), 3634–3645 (2006).
    [CrossRef] [PubMed]
  33. A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
    [CrossRef]
  34. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism,” Opt. Express 15,11984–11998 (2007); 15, 14618-14618 (2007). http://www.opticsinfobase.org/abstract.cfm?&id=141215
    [CrossRef]
  35. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
    [CrossRef] [PubMed]
  36. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
    [CrossRef] [PubMed]
  37. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  38. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
  39. S. Broersma, “Viscous force and torque constants for a cylinder,” J. Chem. Phys. 74(12), 6989–6990 (1981).
    [CrossRef]
  40. D. Li and Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
    [CrossRef]
  41. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996).
    [CrossRef]
  42. A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
    [CrossRef] [PubMed]
  43. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
    [CrossRef]
  44. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  45. F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
    [CrossRef]

2009

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

2008

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
[CrossRef]

2007

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

2006

2004

2003

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

2002

2001

R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40(12), 1961–1973 (2001).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

2000

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41(5), 275–285 (2000).
[CrossRef]

1999

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
[CrossRef]

1998

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

1997

1996

D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996).
[CrossRef]

1995

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

1994

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

1991

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

1981

S. Broersma, “Viscous force and torque constants for a cylinder,” J. Chem. Phys. 74(12), 6989–6990 (1981).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Abruña, H.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Allen, L.

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Barbosa, L. C.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[CrossRef]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

Bonaccorso, F.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Bonin, K. D.

Borghese, F.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
[CrossRef] [PubMed]

Broersma, S.

S. Broersma, “Viscous force and torque constants for a cylinder,” J. Chem. Phys. 74(12), 6989–6990 (1981).
[CrossRef]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Camposeo, A.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

Cesar, C. L.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
[CrossRef] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Chillce, E.

Chun, I.

D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996).
[CrossRef]

Cingolani, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Craighead, H. G.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

de Thomaz, A. A.

DeFranco, J. A.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Denti, P.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Di Benedetto, F.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Flores-Torres, S.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[CrossRef]

Fontes, A.

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Galajda, P.

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Gauthier, R. C.

Gouesbet, G.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
[CrossRef]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
[CrossRef]

Gréhan, G.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Iatì, M. A.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
[CrossRef] [PubMed]

Ilic, R.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
[CrossRef]

Johnson, A. T.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Jonáš, A.

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

Jones, P. H.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

Kourmanov, B.

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Li, D.

D. Li and Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Lock, J. A.

MacDiarmid, A. G.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Malliaras, G. G.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Mele, E.

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

Miranda, F. A.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Moran-Mirabal, J. M.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Mueller, C. H.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Neves, A. A. R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
[CrossRef] [PubMed]

Nieminen, T. A.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

O’Neil, A. T.

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Ormos, P.

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41(5), 275–285 (2000).
[CrossRef]

Padgett, M. J.

Pagliara, S.

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

Parkin, S. J.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Persano, L.

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

Piccirillo, B.

Pinto, N. J.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Pisignano, D.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

Polaert, H.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
[CrossRef]

Pozzo, L. Y.

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

Reneker, D. H.

D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Robinson, D. C.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Rodriguez, E.

Rozhin, A. G.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Saija, R.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006).
[CrossRef] [PubMed]

Santamato, E.

Sasso, A.

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
[CrossRef]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Scardaci, V.

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Simpson, N. B.

Slinker, J. D.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Stabile, R.

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Theofylaktos, N.

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Tropea, C.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
[CrossRef]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Vella, A.

Verbridge, S. S.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

Walker, T. G.

Weiland, K. E.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Wrbanek, S. Y.

Xia, Y.

D. Li and Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Xu, F.

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
[CrossRef]

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Zemánek, P.

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

Adv. Mater.

D. Li and Y. Xia, “Electrospinning of Nanofibers: Reinventing the Wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Annu. Rev. Biochem.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951–2953 (1998).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, “Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor,” Appl. Phys. Lett. 83(20), 4244–4246 (2003).
[CrossRef]

Chem. Soc. Rev.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

Contemp. Phys.

M. Padgett and L. Allen, “Light with a twist in its tail,” Contemp. Phys. 41(5), 275–285 (2000).
[CrossRef]

Electron. Lett.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beam,” Electron. Lett. 27(20), 1831–1832 (1991).
[CrossRef]

Electrophoresis

A. Jonáš and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

J. Chem. Phys.

S. Broersma, “Viscous force and torque constants for a cylinder,” J. Chem. Phys. 74(12), 6989–6990 (1981).
[CrossRef]

Lab Chip

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nano Lett.

J. M. Moran-Mirabal, J. D. Slinker, J. A. DeFranco, S. S. Verbridge, R. Ilic, S. Flores-Torres, H. Abruña, G. G. Malliaras, and H. G. Craighead, “Electrospun light-emitting nanofibers,” Nano Lett. 7(2), 458–463 (2007).
[CrossRef] [PubMed]

O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “Femtonewton force sensing with optically trapped nanotubes,” Nano Lett. 8(10), 3211–3216 (2008).
[CrossRef] [PubMed]

Nanotechnology

D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7(3), 216–223 (1996).
[CrossRef]

Nat. Mater.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, “Patterning of light-emitting conjugated polymer nanofibres,” Nat. Nanotechnol. 3(10), 614–619 (2008).
[CrossRef] [PubMed]

Nature

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Commun.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155(1-3), 169–179 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Xu, J. A. Lock, G. Gouesbet, and C. Tropea, “Radiation torque exerted on a spheroid: Analytical solution,” Phys. Rev. A 78(1), 013843 (2008).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 041507 (2007).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, C. L. Cesar, A. Camposeo, R. Cingolani, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 061917 (2007).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3676–3681 (1999).
[CrossRef]

Phys. Rev. Lett.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Rev. Sci. Instrum.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[CrossRef]

Science

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Small

A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, “Laser emission from electrospun polymer nanofibers,” Small 5(5), 562–566 (2009).
[CrossRef] [PubMed]

Other

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism,” Opt. Express 15,11984–11998 (2007); 15, 14618-14618 (2007). http://www.opticsinfobase.org/abstract.cfm?&id=141215
[CrossRef]

F. Borghese, P. Denti, and R. Saija, Scattering from model nonspherical particles (Springer, Berlin, 2007), 2nd ed.

Supplementary Material (4)

» Media 1: AVI (14027 KB)     
» Media 2: AVI (2789 KB)     
» Media 3: AVI (9026 KB)     
» Media 4: AVI (15055 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of the geometric configuration for a fiber trapped and rotated about its center-of-mass (black dot). Rotation occurs in the xy plane. (b) Geometry of the optical trapping of a fiber rotated about a point shifted by ξ towards the edge of the fiber (white dot).

Fig. 2
Fig. 2

(a) Scheme of the optical tweezers set-up with detection using backscattered light. The arrows indicate the light paths. (b)-(e): Optical rotation of the polymer fiber, schematized (top, Media 1), and imaged (bottom). The fiber main axis is tilted by θ from the optical axis, the trapping point is shifted by ξ from the center-of-mass (CM). Scale bar 2.5 µm.

Fig. 3
Fig. 3

Non-rotating tilted fiber aligning with external linear polarization vs. waveplate angle, ψ. Continuous line (blue) represents the x-axis position (left vertical scale), and the dashed line (red) the y-axis position (right vertical scale), projected onto the quadrant photodiode. Inset: Micrographs of a tilted nanofiber for ψ = 120° (a), 140° (b), and 160° (c). Scale bar = 5 µm.

Fig. 4
Fig. 4

(a) SEM of typical polymer fibers used in the rotation experiments, scale bar = 2 µm. (b) Typical peak of power spectral density corresponding to the rotating frequency of the trapped fiber (L = 8.3 µm) at optical power 113 mW. (c) Trapped rotating fiber frequency vs. trapping power, for fibers of different lengths, with their respective fits through the origin. Power values measured for light before entering the microscope.

Fig. 5
Fig. 5

Comparison of the measured (full blue squares) and calculated (empty red circles and empty red diamonds) trapping frequency vs. sine of the tilt angle, θ, for a fiber with length L = 8.8 µm. The rotation frequencies are calculated by assuming a trapping point close to the fiber tip (empty red circles) or a progressive shift towards the fiber center of mass (empty red diamond). The shift between two consecutive calculated points is of 0.45 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F Rad = r 2 Ω r ^ T M d Ω
M Rad = r 3 Ω r ^ T M × r ^ d Ω
T M = 1 8 π Re[ n 2 E E * + B B * 1 2 ( n 2 | E | 2 + | B | 2 ) I ]
F Rad ξ = r 2 16 π Re ( r ^ v ^ ξ ) [ n 2 ( | E S | 2 + 2 E I E S ) + ( | B S | 2 + 2 B I B S ) ] d Ω
M Rad = 1 8 π r 3 Re n 2 r ^ ( E I + E S ) ( E I + E S ) × r ^ d Ω
Γ = ln p + δ 4 π η L , Γ | | = ln p + δ | | 2 π η L , Γ R o t = 3 ( ln p + δ R o t ) π η L 3
Γ R o t ( L + 2 ξ ) = 3 ( ln p ˜ + δ ˜ R o t ) π η ( L + 2 ξ ) 3
Ω = | M r a d | Γ R o t ( L + 2 ξ )

Metrics