Abstract

Excitation of cladding modes has been achieved using long-period (LPGs) inscribed in an endlessly single-mode photonic crystal fiber (ESM PCF) by CO2 laser irradiation. Core-cladding mode coupling and recoupling has resulted in marked improvement in the evanescent field overlap throughout the cladding air channels in the PCF-LPG, compared to the PCF alone. Our numerical simulation has shown that design optimization of the PCF-LPG configuration can lead to a field power overlap as high as 22% with a confinement loss of less than 1 dB/m in the cladding mode.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
    [CrossRef]
  3. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  5. J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24(21), 1460–1462 (1999).
    [CrossRef]
  8. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Bloch method for the analysis of modes in microstructured optical fibers,” Opt. Express 12(8), 1769–1774 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1769 .
    [CrossRef] [PubMed]
  9. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [CrossRef]
  10. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [CrossRef]
  11. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8232 .
    [CrossRef] [PubMed]
  12. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  13. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
    [CrossRef]
  14. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  15. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  16. H. Jeong and K. Oh, “Theoretical analysis of cladding-mode waveguide dispersion and its effects on the spectra of long-period fiber grating,” J. Lightwave Technol. 21(8), 1838–1845 (2003).
    [CrossRef]
  17. Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
    [CrossRef]
  18. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).
  19. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11(11), 1310–1321 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-11-1310 .
    [CrossRef] [PubMed]
  20. T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
    [CrossRef]
  21. Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
    [CrossRef]
  22. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
    [CrossRef]

2008

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[CrossRef]

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310–324 (2008).
[CrossRef]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[CrossRef] [PubMed]

2006

2005

2004

2003

2001

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

2000

1999

1998

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

1997

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Allsop, T.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Bang, O.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Bennion, I.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Birks, T. A.

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Bjarklev, A.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Carlsen, A.

Choi, S.

de Sterke, C. M.

Diez, A.

Du, H.

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[CrossRef]

Dubov, M.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Dufva, M.

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Folkenberg, J. R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Guobin, R.

Hansen, T. P.

He, Z.

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
[CrossRef]

Hoiby, P. E.

Høiby, P. E.

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
[CrossRef]

Jensen, J. B.

Jeong, H.

Jin, W.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Jung, Y.

Kalli, K.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Kanka, J.

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Kwok, Y. C.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

Lai, Y.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Lee, J. W.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Mangan, B. J.

McPhedran, R. C.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Ngo, N. Q.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Oh, K.

Pedersen, L. H.

Peterka, P.

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

Reeves, W. H.

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Riishede, J.

Rindorf, L.

Russell, P. St. J.

Shuisheng, J.

Shum, P.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Shuqin, L.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Smith, G.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Spälter, S.

Strasser, T. A.

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
[CrossRef]

Webb, D. J.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

Yu, X.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

Zhi, W.

Zhou, K.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[CrossRef]

Appl. Phys. Lett.

Z. He, Y. Zhu, and H. Du, “Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution,” Appl. Phys. Lett. 92(4), 044105 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. L. Hoo, W. Jin, H. L. Ho, and D. N. Wang, “Measurement of gas diffusion coefficient photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1434–1436 (2003).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photon. Technol. Lett. 20(5), 336–338 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

J. M. Fini, “Microstructure fibers for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Opt. Commun.

T. Allsop, K. Kalli, K. Zhou, Y. Lai, G. Smith, M. Dubov, D. J. Webb, and I. Bennion, “Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors,” Opt. Commun. 281(20), 5092–5096 (2008).
[CrossRef]

Y. Zhu, R. T. Bise, J. Kaňka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

SIAM (Soc. Ind. Appl. Math)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence behavior of the Nelder-Mead simplex algorithm in low dimensions,” SIAM (Soc. Ind. Appl. Math) 9,112–147 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of core-cladding mode coupling and recoupling in the ESM PCF-LPG (bottom) with progression of transmission spectra (top) indicating the power intensity of mode coupling and recoupling as the number of grating period increases.

Fig. 2
Fig. 2

Transmission spectra of core-cladding mode coupling and recoupling with the number of grating period in steps of 10 periods as parameter: (a) forward core-cladding mode coupling in the ESM PCF-LPG and (b) cladding-core mode recoupling in the ESM PCF-LPG. Inset, optical micrograph of a cleaved facet of the ESM PCF.

Fig. 3
Fig. 3

Calculated power flow of optimized PCFs for HE11-HE12 mode coupling for a LPG resonant wavelength of 1550 nm and a periodicity of 180 μm: (a) HE11 core mode in FIBER1, (b) HE12-like cladding mode in FIBER1, (c) HE11 core mode in FIBER2, (d) HE12-like cladding mode in FIBER2.

Fig. 4
Fig. 4

Calculated power flow of optimized PCFs for HE11-HE12 mode coupling for a LPG resonant wavelength of 1550 nm and a periodicity of 50 μm: (a) HE11 core mode in FIBER3, (b) HE12-like cladding in FIBER3, (c) HE11 core mode in FIBER4, (d) HE12-like cladding mode in FIBER4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k m = 2 π η m Δ n / λ
T min = 1 sin 2 ( k H E 12 L )

Metrics