Abstract

Light transmission spectrum of a multilayer photonic crystal with a central liquid-crystal defect layer placed between crossed polarizers has been studied. Transmittance was varied due to the magnetically induced reorientation of the nematic director from homeotropic to planar alignment. Two notable effects were observed for this scheme: the spectral shift of defect modes corresponding to the extraordinary light wave and its superposition with the ordinary one. As a result, the optical cell allows controlling the intensity of interfering defect modes by applied magnetic field.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  4. H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).
  5. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
    [CrossRef]
  6. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
    [CrossRef]
  7. S. Ya. Vetrov and A. V. Shabanov, “Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects,” Sov. Phys. JETP 93(5), 977–984 (2001).
    [CrossRef]
  8. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
    [CrossRef]
  9. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
    [CrossRef]
  10. A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14(7), 2839–2844 (2006).
    [CrossRef] [PubMed]
  11. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
    [CrossRef]
  12. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
    [CrossRef]
  13. T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
    [CrossRef]
  14. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
    [CrossRef] [PubMed]
  15. V. K. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919 (1933).
    [CrossRef]

2009

2008

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
[CrossRef]

2006

2004

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

2003

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

2002

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).

2001

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
[CrossRef]

S. Ya. Vetrov and A. V. Shabanov, “Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects,” Sov. Phys. JETP 93(5), 977–984 (2001).
[CrossRef]

1999

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1933

V. K. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919 (1933).
[CrossRef]

Barberi, R.

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
[CrossRef]

Busch, K.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

Chilaya, G.

De Santo, M. P.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Freedericksz, V. K.

V. K. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919 (1933).
[CrossRef]

Ishikawa, K.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

John, S.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kitzerow, H.

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).

Kivshar, Y. S.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
[CrossRef]

A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14(7), 2839–2844 (2006).
[CrossRef] [PubMed]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Matranga, M. A.

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
[CrossRef]

A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14(7), 2839–2844 (2006).
[CrossRef] [PubMed]

Nagata, T.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Nishimura, S.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Ohta, T.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Petriashvili, G.

Pinkevych, I.

Shabanov, A. V.

S. Ya. Vetrov and A. V. Shabanov, “Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects,” Sov. Phys. JETP 93(5), 977–984 (2001).
[CrossRef]

Shimoda, Y.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
[CrossRef]

Song, M. H.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Takanishi, Y.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Takezoe, H.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Toyooka, T.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Vetrov, S. Ya.

S. Ya. Vetrov and A. V. Shabanov, “Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects,” Sov. Phys. JETP 93(5), 977–984 (2001).
[CrossRef]

Watanabe, J.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
[CrossRef]

Zolina, V.

V. K. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919 (1933).
[CrossRef]

Appl. Phys. Lett.

Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92(25), 253306 (2008).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

T. Nagata, T. Ohta, M. H. Song, Y. Takanishi, K. Ishikawa, J. Watanabe, T. Toyooka, S. Nishimura, and H. Takezoe, “Anomalously directed amplified spontaneous emission from a wedge-shaped cell sandwiched by cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 43(No. 9A/B), L1220–L1222 (2004).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[CrossRef]

Liq. Cryst. Today

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).

Opt. Express

Phys. Rev. Lett.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Sov. Phys. JETP

S. Ya. Vetrov and A. V. Shabanov, “Localized electromagnetic modes and the transmission spectrum of a one-dimensional photonic crystal with lattice defects,” Sov. Phys. JETP 93(5), 977–984 (2001).
[CrossRef]

Trans. Faraday Soc.

V. K. Freedericksz and V. Zolina, “Forces causing the orientation of an anisotropic liquid,” Trans. Faraday Soc. 29, 919 (1933).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Supplementary Material (1)

» Media 1: MOV (1589 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup used to study transmission spectra of a PC/LC cell with a magnetically controlled nematic as a tunable defect layer. (P) and (A) are crossed linear polarizers.

Fig. 2
Fig. 2

Spectral positions of the maxima of polarized defect modes versus applied magnetic field. Experimental data for e-wave are denoted by symbols and approximated by the solid lines. Dashed lines show the invariable positions of maxima for o-wave. Threshold magnetic field H c = 6.3 kOe.

Fig. 3
Fig. 3

Typical transmission spectrum of the PC/LC cell placed between crossed polarizers as a function of the reduced magnetic field.

Fig. 4
Fig. 4

Magnetically induced modulation of transmittance of the PC/LC cell at various wavelengths corresponding to three distinct o-mode spectral positions.

Fig. 5
Fig. 5

Magnetic-field-induced switching of the spectrum. Solid line represents the transmittance at HH c. Dashed line displays the first maximum of defect mode intensity at Н/Hc = 1.06. Dotted line is a second maximum at Н/Hc = 1.21. Dashed-dotted line is a second minimum at Н/Hc = 1.32. All curves correspond to the extrema at λo = 584.4 nm.

Fig. 6
Fig. 6

The variation of simulated transmission spectrum depending on the applied magnetic field between 6.1 and 20 kOe (Media 1). H = 6.68 kOe corresponds to Н/Hc = 1.06.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ e = 2 L n e m e , P | | x , e -modes, λ o = 2 L n o m o , P | | y , o -modes,

Metrics