Abstract

We have demonstrated that, in elevated oxide-layer vertical-cavity surface-emitting lasers (VCSELs) where the spacing between 1–λ cavity and oxide layer is 9λ/4, a variety of turn-off-induced abnormalities such as secondary pulsations, bumps and tails is effectively suppressed. Compared are turn-off transient responses of conventional and elevated oxide-layer VCSELs with the oxide-aperture diameter of approximately 6.6 μm. The “on”- and “off”-current dependence of the turn-off-induced transient responses and bit rate dependence of the timing jitters show that the elevated oxide-layer structure effectively suppresses the turn-off-induced pulsations to less than half of the conventional one, which enables the VCSEL transmitter to operate without deleterious effects by the turn-off-induced pulsation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
    [CrossRef]
  2. A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
    [CrossRef]
  3. A. Valle and L. Pesquera, "Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001)
    [CrossRef]
  4. A. Valle and L. Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Amer. B 23, 2148-2156 (2006).
    [CrossRef]
  5. J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Lightwave Technol. 17, 95-101(1999).
    [CrossRef]
  6. J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
    [CrossRef]
  7. J. Park, T. Kim, S.-H. Kim, and S.-B. Kim, "A passively aligned VCSEL transmitter operating at fixed current over a wide temperature range," Opt. Express 17, 5147-5152 (2009).
    [CrossRef] [PubMed]
  8. M. S. Torre and H. F. Ranea-Sandoval, "Influence of the carrier diffusion process on the transient response of vertical-cavity surface-emitting lasers," Int. J. Numer. Model. 16, 29-39 (2003).
    [CrossRef]
  9. A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
    [CrossRef]
  10. C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
    [CrossRef]
  11. S. Riyopoulos, "Elimination of transient vertical-cavity surface-emitting laser oscillations using photoactive feedback," Appl. Phys. Lett. 75, 3057-3059 (1999)
    [CrossRef]

2009 (1)

2006 (2)

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

A. Valle and L. Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Amer. B 23, 2148-2156 (2006).
[CrossRef]

2005 (1)

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

2003 (1)

M. S. Torre and H. F. Ranea-Sandoval, "Influence of the carrier diffusion process on the transient response of vertical-cavity surface-emitting lasers," Int. J. Numer. Model. 16, 29-39 (2003).
[CrossRef]

2001 (1)

A. Valle and L. Pesquera, "Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001)
[CrossRef]

1999 (2)

S. Riyopoulos, "Elimination of transient vertical-cavity surface-emitting laser oscillations using photoactive feedback," Appl. Phys. Lett. 75, 3057-3059 (1999)
[CrossRef]

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Lightwave Technol. 17, 95-101(1999).
[CrossRef]

1997 (1)

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

1995 (2)

A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
[CrossRef]

Destrez, A.

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Gholami, A.

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Guenter, J.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Harton, A. V.

Johnson, R.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Kang, S. M.

Kim, S.-B.

Kim, S.-H.

Kim, T.

Mena, P. V.

Morikuni, J. J.

Park, J.

Penty, R. V.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Pesquera, L.

A. Valle and L. Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Amer. B 23, 2148-2156 (2006).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001)
[CrossRef]

Pez, M.

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Quentel, F.

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Ranea-Sandoval, H. F.

M. S. Torre and H. F. Ranea-Sandoval, "Influence of the carrier diffusion process on the transient response of vertical-cavity surface-emitting lasers," Int. J. Numer. Model. 16, 29-39 (2003).
[CrossRef]

Riyopoulos, S.

S. Riyopoulos, "Elimination of transient vertical-cavity surface-emitting laser oscillations using photoactive feedback," Appl. Phys. Lett. 75, 3057-3059 (1999)
[CrossRef]

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
[CrossRef]

Shore, K. A.

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
[CrossRef]

Smith, D.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Tatum, J.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Tee, C. W.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Toffano, Z.

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Torre, M. S.

M. S. Torre and H. F. Ranea-Sandoval, "Influence of the carrier diffusion process on the transient response of vertical-cavity surface-emitting lasers," Int. J. Numer. Model. 16, 29-39 (2003).
[CrossRef]

Valle, A.

A. Valle and L. Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Amer. B 23, 2148-2156 (2006).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001)
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
[CrossRef]

White, I. H.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Wyatt, K. W.

Yu, S. F.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A. Valle and L. Pesquera, "Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001)
[CrossRef]

S. Riyopoulos, "Elimination of transient vertical-cavity surface-emitting laser oscillations using photoactive feedback," Appl. Phys. Lett. 75, 3057-3059 (1999)
[CrossRef]

IEEE J. Quantum Electron. (2)

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995)
[CrossRef]

Int. J. Numer. Model. (1)

M. S. Torre and H. F. Ranea-Sandoval, "Influence of the carrier diffusion process on the transient response of vertical-cavity surface-emitting lasers," Int. J. Numer. Model. 16, 29-39 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Amer. B (2)

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting laser diodes," J. Opt. Soc. Amer. B 12, 1741-1746 (1995)
[CrossRef]

A. Valle and L. Pesquera, "Bias level dependence of turn-off oscillations in vertical-cavity surface-emitting lasers," J. Opt. Soc. Amer. B 23, 2148-2156 (2006).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

A. Gholami, Z. Toffano, A. Destrez, M. Pez, and F. Quentel, "Spatiotemporal and thermal analysis of VCSEL for short-range gigabit optical links," Opt. Quantum Electron. 38, 479-493 (2006).
[CrossRef]

Proc. SPIE (1)

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of oxide VCSELs. The spacing d between the oxide layer and 1-λ cavity is λ/4 for type A and 9λ/4 for type B VCSELs.

Fig. 2.
Fig. 2.

Room-temperature L-I-V characteristics of type A(☐) and B(◇) VCSELs.

Fig. 3.
Fig. 3.

Turn-off transient responses of type A and B VCSELs measured at room temperature with the “off”-current of Ith + 0.05 and Ith + 0.1 mA. The “on”-currents of type A and B VCSEL are adjusted for the chip level optical power of 0.67, 1, 1.33 and 1.67 mW. Zero-levels of turn-off transient curves for each “on”-current are shifted for visual aid.

Fig. 4.
Fig. 4.

The turn-off response of type A and B VCSELs measured at room temperature with fixed “on”-current and varied “off”-current of Ith - 0.2 mA to Ith + 0.6 mA with a 0.1 mA-step. The “on”-current is fixed at 2.4 and 3.9 mA for type A and B VCSELs, respectively, for the chip level optical power of 1 mW. The zero-levels of the curves for each “off”-current are shifted for visual aid.

Fig. 5.
Fig. 5.

(a) Measured optical power variation δP0 in the “off” state and (b) delay time td as a function of Ioff - Ith for type A (‖) and B (◇) VCSELs when the “on”-current is 2.4 and 3.9 mA for type A and type B VCSELs, respectively.

Fig. 6.
Fig. 6.

Unfiltered eye diagrams of type A VCSEL transmitter module measured at room temperature with fixed “on”-current of 2.4 mA and “off”-current of 0.5 mA at (a) 500 Mb/s, (b) 700 Mb/s, (c) 900 Gb/s, (d) 1.1 Gb/s, (e) 1.3 Gb/s, (f) 1.5 Gb/s, (g) 1.7 Gb/s and (f) 1.9 Gb/s, respectively. The vertical scale is 50 μW/div. and time scale is 200 ps except for (a), (b) and (c) with 500 ps.

Fig. 7.
Fig. 7.

Data-rate dependence of the RMS timing jitter of type A (■) and type B (◆) VCSELs measured at room temperature. The “on”-current is fixed at 2.4 and 3.9 mA for type A and B VCSELs, respectively, for the chip level optical power of 1 mW. The “off”-current is fixed at Ioff = Ith + 0.1 mA for both types.

Metrics