Abstract

We present a non-collinear optical parametric amplifier (NOPA) delivering sub-10-fs pulses with 420 nJ of pulse energy. The system is driven by microjoule pulses from an Yb:KYW oscillator with cavity-dumping and a subsequent single-stage rod-type fiber amplifier at 1-MHz repetition rate. The ultrabroadband seed is based on stable white-light generation from 420 fs long pulses in a YAG plate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wave pumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-21-2118.
    [CrossRef] [PubMed]
  2. F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-26-12822.
    [CrossRef] [PubMed]
  3. V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, "Chirped pulse amplification of laser pulses with dispersive mirrors," Opt. Express 17, 19204-19212 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-21-19204.
    [CrossRef]
  4. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt. Lett. 33, 192-194 (2008). URL http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-2-192.
    [CrossRef] [PubMed]
  5. J. Rothhardt, S. Hädrich, D. N. Schimpf, J. Limpert, and A. Tünnermann, "High repetition rate fiber amplifier pumped sub-20 fs optical parametric amplifier," Opt. Express 15, 16729-16736 (2007). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16729.
    [CrossRef] [PubMed]
  6. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, "Generation of fewcycle pulses directly from a MHz-NOPA," Opt. Express 14, 10627-10630 (2006). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10627.
    [CrossRef] [PubMed]
  7. A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
    [CrossRef]
  8. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, "Passively mode locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion," Opt. Express 15, 16017-16021 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16017.
    [CrossRef] [PubMed]
  9. A. Offner, US Patent 3,748,015 (1973).
  10. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly Efficient Transmission Gratings in Fused Silica for Chirped-Pulse Amplification Systems," Appl. Opt. 42, 6934-6938 (2003). URL http://ao.osa.org/abstract.cfm?URI=ao-42-34-6934.
    [CrossRef] [PubMed]
  11. M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
    [CrossRef]
  12. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001). URL http://josab.osa.org/abstract.cfm?URI=josab-18-6-882.
    [CrossRef]
  13. J. W. Nicholson and W. Rudolph, "Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO)," J. Opt. Soc. Am. B 19, 330-339 (2002). URL http://josab.osa.org/abstract.cfm?URI=josab-19-2-330.
    [CrossRef]
  14. S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner, and U. Morgner, "Few-cycle femtosecond field synthesizer," Opt. Express 16, 17410-17419 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-22-17410.
    [CrossRef] [PubMed]

2009

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

2008

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Emons, M.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Morgner, U.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Palmer, G.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Siegel, M.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Steinmann, A.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Appl. Phys. B

M. Bradler, P. Baum, and E. Riedle, "Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses," Appl. Phys. B 97, 561-574 (2009).
[CrossRef]

Laser Phys.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μJ 420-fs Pulses by Fiber-Based Amplification of a Cavity-Dumped Yb:KYW Laser Oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Other

G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, "Passively mode locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion," Opt. Express 15, 16017-16021 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-24-16017.
[CrossRef] [PubMed]

A. Offner, US Patent 3,748,015 (1973).

T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly Efficient Transmission Gratings in Fused Silica for Chirped-Pulse Amplification Systems," Appl. Opt. 42, 6934-6938 (2003). URL http://ao.osa.org/abstract.cfm?URI=ao-42-34-6934.
[CrossRef] [PubMed]

R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wave pumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-21-2118.
[CrossRef] [PubMed]

F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-26-12822.
[CrossRef] [PubMed]

V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, "Chirped pulse amplification of laser pulses with dispersive mirrors," Opt. Express 17, 19204-19212 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-21-19204.
[CrossRef]

C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt. Lett. 33, 192-194 (2008). URL http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-2-192.
[CrossRef] [PubMed]

J. Rothhardt, S. Hädrich, D. N. Schimpf, J. Limpert, and A. Tünnermann, "High repetition rate fiber amplifier pumped sub-20 fs optical parametric amplifier," Opt. Express 15, 16729-16736 (2007). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16729.
[CrossRef] [PubMed]

A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, "Generation of fewcycle pulses directly from a MHz-NOPA," Opt. Express 14, 10627-10630 (2006). URL http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10627.
[CrossRef] [PubMed]

F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001). URL http://josab.osa.org/abstract.cfm?URI=josab-18-6-882.
[CrossRef]

J. W. Nicholson and W. Rudolph, "Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO)," J. Opt. Soc. Am. B 19, 330-339 (2002). URL http://josab.osa.org/abstract.cfm?URI=josab-19-2-330.
[CrossRef]

S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner, and U. Morgner, "Few-cycle femtosecond field synthesizer," Opt. Express 16, 17410-17419 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-22-17410.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the MHz-NOPA system. DCM: Double chirped mirrors, ROC: Radius of curvature.

Fig. 2.
Fig. 2.

Output power of the NOPA versus time. The oscillation is from remaining temperature oscillations in the oscillator cooling system.

Fig. 3.
Fig. 3.

Left: Optical output spectrum of the MHz-NOPA supporting a Fourier-limited pulse duration of 5.9 fs. Right: Interferometric autocorrelation of the compressed pulses. The measurement (blue dots) indicates a pulse duration of 9.7 fs calculated from the best-fit curve (red solid line).

Fig. 4.
Fig. 4.

Left: Comparison between the summation of the estimated GD due to the material inside the NOPA (black solid line) [YAG: 2mm, BBO: 5mm, achromatic lens, short pass filter, air and dispersive mirrors] and the GD compensation of the compressor-mirrors (blue dashed line) resulting in a mean-GD value (red dots) after compression. Right: The resulting mean-dispersion curve in detail (red dots), and the reconstructed dispersion curve from the IAC measurement (green solid line).

Metrics