Abstract

We present a new approach to solar concentration where sunlight collected by each lens in a two-dimensional lens array is coupled into a shared, planar waveguide using localized features placed at each lens focus. This geometry yields a thin, flat profile for moderate concentration systems which may be fabricated by low-cost roll manufacture. We provide analyses of tradeoffs and show optimized designs can achieve 90% and 82% optical efficiency at 73x and 300x concentration, respectively. Finally, we present preliminary experimental results of a concentrator using self-aligned reflective coupling features fabricated by exposing molded SU-8 features through the lens array.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Benitez, and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Ch. 13.
  2. R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics, (Academic Press 2004).
  3. J. M. Gordon, “Concentrator Optics,” in Concentrator Photovoltaics, A. L. Luque and V. M. Andreev, (Springer, Berlin, 2007), Ch. 6.
  4. D. Feuermann, and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Solar Energy, Vol. 70–5, 423–430 (2001).
  5. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30(19), 2617–2619 (2005).
    [CrossRef] [PubMed]
  6. A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).
  7. C. Balanis, Advanced Engineering Electromagnetics, (John Wiley & Sons, 1989).
  8. W. J. Cassarly, “Nonimaging optics: concentration and illumination,” in Handbook of Optics Vol. III, M. Bass, J. M Enoch, E, W, Van Stryland and W. L. Wolfe (2nd ed. McGraw-Hill, 1995), Ch. 2.
  9. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21(11), 794–796 (1996).
    [CrossRef] [PubMed]
  10. M. C. Chien, Y. L. Tung, and C. H. Tien, “Ultracompact backlight-reversed concentration optics,” Appl. Opt. 48(21), 4142–4148 (2009).
    [CrossRef] [PubMed]
  11. M. P. C. Watts, “Advances in roll to roll processing of optics,” Proc. SPIE 6883, 688305 (2008).
    [CrossRef]
  12. A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
    [CrossRef]
  13. A. Rabl, Active solar collectors and their applications, (Oxford University Press, New York, 1985).
  14. J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
    [CrossRef]
  15. W. G. Van Sark, K. W. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. Mc.Cormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, S. H. Wadman, G. P. van Klink, G. van Koten, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - A review of recent results,” Opt. Express 16, 21773–21792 (2008).
    [CrossRef] [PubMed]
  16. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A. 14, 235–254 (1977).
  17. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [CrossRef]
  18. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [CrossRef]
  19. C. E. Winiarz, “Measurement of light capture in solar cells from silver- and tin-plated patterned bus bars,” (S.B. Thesis, Massachusetts Institute of Technology, Dept. of Mech. Eng., 2007).
  20. P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).
  21. A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
    [CrossRef]
  22. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [CrossRef]
  23. A. S. T. M. Standard, G173–03e1, “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” Ann. Book of ASTM Standards, Philadelphia, PA, 2003, DOI: 10.1520/G0173-03E01, www.astm.org .
  24. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
    [CrossRef]
  25. R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
    [CrossRef]
  26. A. T. Cannistra and T. J. Suleski, “Characterization of hybrid molding and lithography for SU-8 micro-optical components,” Proc. SPIE 7205, 720517 (2009).
    [CrossRef]
  27. J. H. Karp and J. E. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).

2009 (4)

M. C. Chien, Y. L. Tung, and C. H. Tien, “Ultracompact backlight-reversed concentration optics,” Appl. Opt. 48(21), 4142–4148 (2009).
[CrossRef] [PubMed]

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[CrossRef]

A. T. Cannistra and T. J. Suleski, “Characterization of hybrid molding and lithography for SU-8 micro-optical components,” Proc. SPIE 7205, 720517 (2009).
[CrossRef]

J. H. Karp and J. E. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).

2008 (3)

2007 (1)

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[CrossRef]

2005 (1)

2003 (1)

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

2001 (3)

A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
[CrossRef]

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

1997 (1)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

1996 (1)

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A. 14, 235–254 (1977).

1971 (1)

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).

Andreev, V. M.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Arbore, M. A.

Barnham, K. W.

Baur, C.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Bende, E. E.

Bett, A. W.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Bose, R.

Büchtemann, A.

Budel, T.

Burgers, A. R.

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Cannistra, A. T.

A. T. Cannistra and T. J. Suleski, “Characterization of hybrid molding and lithography for SU-8 micro-optical components,” Proc. SPIE 7205, 720517 (2009).
[CrossRef]

Celanese, H.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

Chang, J. G.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[CrossRef]

Chatten, A. J.

Chien, M. C.

Chou, M. H.

Davis, A.

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[CrossRef]

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Dimroth, F.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Fang, Y. B.

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[CrossRef]

Farrell, D. J.

Fejer, M. M.

Floyd, T. M.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Ford, J. E.

J. H. Karp and J. E. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).

Gambling, W. A.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).

Ghodssi, R.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Gordon, J. M.

Green, M. A.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

Jackman, R. J.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Jensen, K. F.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Jones, D. T.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).

Karp, J. H.

J. H. Karp and J. E. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).

Kennedy, M.

Khanarian, G.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

Koole, R.

Kostuk, R. K.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Lange, G.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Laybourn, P. J. R.

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).

Loper, C.

A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
[CrossRef]

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Marcano O, A.

A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
[CrossRef]

Mc.Cormack, S. J.

Meijerink, A.

Melikechi, N.

A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
[CrossRef]

Meusel, M.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Meyer, A.

Meyer, T.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A. 14, 235–254 (1977).

Quilitz, J.

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Riesen, S.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

Rumyantsev, V. D.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Sadchikov, N. A.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Schmidt, M. A.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Siefer, G.

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Slooff, L. H.

Suleski, T. J.

A. T. Cannistra and T. J. Suleski, “Characterization of hybrid molding and lithography for SU-8 micro-optical components,” Proc. SPIE 7205, 720517 (2009).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A. 14, 235–254 (1977).

Tien, C. H.

Tung, Y. L.

van Klink, G. P.

van Koten, G.

Van Sark, W. G.

Vanmaekelbergh, D.

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

Wadman, S. H.

Watts, M. P. C.

M. P. C. Watts, “Advances in roll to roll processing of optics,” Proc. SPIE 6883, 688305 (2008).
[CrossRef]

Winston, R.

Appl. Opt. (1)

Appl. Phys. A. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. A. 14, 235–254 (1977).

Appl. Phys. Lett. (1)

A. Marcano O, C. Loper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78(22), 3415 (2001).
[CrossRef]

J. Appl. Phys. (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[CrossRef]

J. Micromech. Microeng. (2)

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng. 7(3), 121–124 (1997).
[CrossRef]

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11(3), 263–269 (2001).
[CrossRef]

Opt. Eng. (2)

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

J. G. Chang and Y. B. Fang, “Dot-pattern design of a light guide in an edge-lit backlight using a regional partition approach,” Opt. Eng. 46(4), 043002 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron (1)

P. J. R. Laybourn, W. A. Gambling, and D. T. Jones, “Measurement of attenuation in low-loss optical glass,” Opt. Quantum Electron . 3, 137–144 (1971).

Proc. SPIE (5)

A. Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. SPIE 7429, 74290D (2009).
[CrossRef]

A. T. Cannistra and T. J. Suleski, “Characterization of hybrid molding and lithography for SU-8 micro-optical components,” Proc. SPIE 7205, 720517 (2009).
[CrossRef]

J. H. Karp and J. E. Ford, “Planar micro-optic concentration using multiple imaging lenses into a common slab waveguide,” Proc. SPIE 7407, 7407–7411 (2009).

M. P. C. Watts, “Advances in roll to roll processing of optics,” Proc. SPIE 6883, 688305 (2008).
[CrossRef]

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[CrossRef]

Technology and Characterisation (1)

A. W. Bett, C. Baur, F. Dimroth, G. Lange, M. Meusel, S. Riesen, G. Siefer, V. M. Andreev, V. D. Rumyantsev, and N. A. Sadchikov, “FLATCONTM-Modules,” Technology and Characterisation WCPEC-3, 634–637 (2003).

Other (9)

C. Balanis, Advanced Engineering Electromagnetics, (John Wiley & Sons, 1989).

W. J. Cassarly, “Nonimaging optics: concentration and illumination,” in Handbook of Optics Vol. III, M. Bass, J. M Enoch, E, W, Van Stryland and W. L. Wolfe (2nd ed. McGraw-Hill, 1995), Ch. 2.

P. Benitez, and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics, A. Martí and A. Luque, eds. (Institute of Physics, 2004), Ch. 13.

R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics, (Academic Press 2004).

J. M. Gordon, “Concentrator Optics,” in Concentrator Photovoltaics, A. L. Luque and V. M. Andreev, (Springer, Berlin, 2007), Ch. 6.

D. Feuermann, and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Solar Energy, Vol. 70–5, 423–430 (2001).

C. E. Winiarz, “Measurement of light capture in solar cells from silver- and tin-plated patterned bus bars,” (S.B. Thesis, Massachusetts Institute of Technology, Dept. of Mech. Eng., 2007).

A. S. T. M. Standard, G173–03e1, “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” Ann. Book of ASTM Standards, Philadelphia, PA, 2003, DOI: 10.1520/G0173-03E01, www.astm.org .

A. Rabl, Active solar collectors and their applications, (Oxford University Press, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Individual secondary optics require multiple PV cells (a). A slab waveguide homogenizes and transports sunlight from all apertures to a single cell (b). Increasing the waveguide length does not increase the required PV cell area. Arrows indicate PV cell locations.

Fig. 2
Fig. 2

Coupling without loss requires an increase in modal volume (a). Light within planar waveguides may strike subsequent coupling regions and decouple as loss (b). Coupling regions occupy only a small fraction of the waveguide surface to enable high efficiency.

Fig. 3
Fig. 3

Graphical representation of the geometry associated with micro-optic concentrator.

Fig. 4
Fig. 4

The tradeoff between concentration and efficiency is governed by the equations in Section 2. Waveguide length and thickness vs. optical efficiency is plotted for F/3 lenses coupled at φ = 60°.

Fig. 5
Fig. 5

The 120° symmetric prism reflects light at angles that TIR without shadowing from adjacent facets. The lens focal length and acceptance angle define the coupler size (a). A second reflection from the adjacent prism (red ray) matches the angle of the opposite marginal ray (green ray) and still exceeds the critical angle (b) for efficient guiding within the slab.

Fig. 6
Fig. 6

Optical efficiencies for air (blue line) and LS-2233 fluoropolymer (red line) clad concentrator designs are plotted as functions of geometric concentration ratio. The LS-2233 design required larger coupling regions, but eliminated precision air gaps for simplified assembly.

Fig. 7
Fig. 7

Spectral performance for air clad (blue line) and LS-2233 fluoropolymer designs (red line) are plotted at 300x geometric concentration. The LS-2233 design also included a polymer lens array which increased dispersion and near infrared absorption. AM1.5 solar spectrum (grey line) is plotted on the right axis.

Fig. 8
Fig. 8

The size of the coupling region determines the angular acceptance of the concentrator. 78µm diameter couplers (green line) capture only the ± 0.26° extent of the sun. Larger coupling regions (orange line) increase acceptance angles, but also increase decoupling losses.

Fig. 9
Fig. 9

120° coupling facets appearing at each lens focus (a) are fabricated using self-alignment. Lenses form 200μm images with 50μm irregular annuluses which contribute to loss (b). An SEM image (c) captures the coupler profile.

Fig. 10
Fig. 10

When the system is aligned (a, left), light couples into the waveguide and exits the slab edge. Misalignment between the lens array and facets lets light pass directly through the system (a, right) with almost no waveguide coupling. A false color image of the output (b) reveals flux uniformity.

Fig. 11
Fig. 11

A 37.5x prototype concentrator constructed from off-the-shelf components demonstrated the self-aligned fabrication process, but was inefficient compared to optimized designs. Lens fill-factor and aberrations caused the majority of the observed loss.

Fig. 12
Fig. 12

A prototype concentrator was used to collect sunlight in an outdoor setting. Inset: When properly aligned to the sun, light incident on the lens array surface couples into the waveguide and exits at the waveguide edge, appearing as a bright line.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C geo = waveguide length waveguide thickness
C f l u x = η × C g e o
C l e n s = 1 ( 2 F / # tan θ ) 2
η d e c o u p l e ( P , ϕ ) = ( 1 1 C l e n s ) P tan ϕ 2 H
η p o s i t i o n ( P , ϕ ) = ( 1 R ) × η d e c o u p l e ( P , ϕ ) × exp ( α P cos ϕ )
η t o t a l = P ϕ η p o s i t i o n ( P , ϕ ) ( L r ) / 2 r , P = r , 3 r , 5 r , ... , ( L r ) / 2 r

Metrics